CHEMICAL EQUILIBRIA IN THE HETEROGENEOUS COMPOSITION REGION OF THE ACETIC ACID - N-BUTYL ALCOHOL - N-BUTYL ACETATE - WATER SYSTEM AT 298.15 K AND ATMOSPHERIC PRESSURE
- Authors: Toikka M.A1, Smirnov A.A1, Misikov G.K.1, Toikka A.M1
-
Affiliations:
- Saint Petersburg State University
- Issue: Vol 99, No 10 (2025)
- Pages: 1488–1496
- Section: PHYSICAL CHEMISTRY OF SOLUTIONS
- Submitted: 27.01.2026
- Published: 15.10.2025
- URL: https://ogarev-online.ru/0044-4537/article/view/376376
- DOI: https://doi.org/10.7868/S3034553725100055
- ID: 376376
Cite item
Abstract
This work is devoted to studying the compositions of coexisting phases in chemical equilibrium at 298.15 K and atmospheric pressure. The system under investigation is acetic acid - n-butyl alcohol - n-butyl acetate - water. The esterification/hydrolysis reaction was carried out in the presence of a catalyst (hydrochloric acid). All results are presented in the corresponding concentration spaces. For better visualization, the compositions of chemically equilibrated phases are shown in the square of concentration α-variables. A comparative analysis of the obtained results is provided. Correlation of the experimental data using the NRTL model demonstrated satisfactory agreement between the calculated and experimental compositions.
About the authors
M. A Toikka
Saint Petersburg State University
Email: a.toikka@spbu.ru
Saint Petersburg, Russia
A. A Smirnov
Saint Petersburg State University
Email: a.toikka@spbu.ru
Saint Petersburg, Russia
G. Kh Misikov
Saint Petersburg State University
Email: a.toikka@spbu.ru
Saint Petersburg, Russia
A. M Toikka
Saint Petersburg State University
Author for correspondence.
Email: a.toikka@spbu.ru
Saint Petersburg, Russia
References
- Energy Technology Roadmaps of Japan. Future Energy Systems Based on Feasible Technologies Beyond 2030 / Ed.Y. Kato, M. Koyama, Y. Fukushima, T. Nakagaki. Tokyo: Springer, 2016. P. 463.
- Gomez-Castro F.I., Cano-Rodriguez I., Gamino-Arroyo Z. Process Intensification in the Production of Liquid Biofuels: Strategies to Minimize Environmental Impact. Process Intensification in Chemical Engineering / J. Segovia-Hernandez, A. Bonilla-Petriciolet. Cham.Springer, 2016. P. 279. doi: 10.1007/978-3-319-28392-0_10
- Gaurav N., Sivasankari S., Kiran G.S., et al. // Renew. Sustain. Energy Rev. 2017. V.73. P. 205.
- Czyrnek-Deletre M.M., Smyth B.M., Murphy J.D. // Renew. Energy. 2017. V. 105. P. 436.
- Ji L.Q., Zhang C., Fang J.Q. // Renew. Sustain. Energy Rev. 2017. V. 70. P. 224.
- Cai L., Minwegen H., Beeckmann J., et al. // Comb. Flame. 2017. V. 178. P. 257.
- Moreau A., Segovia J.J., Rubio J., Martin M.C. // Fluid Phase Equilib. 2016. V. 409. P. 92.
- Liebergesell B., Kaminski S., Pauls C., et al. // Ibid. 2015. V. 400. P. 95.
- Moreau A., Segovia J.J., Bermejo M.D., Martin M.C. // Ibid. 2016. V. 425. P. 177.
- Moreau A., Segovia J.J., Villamanan R.M., Martin M.C. // Ibid. 2014. V. 384. P. 89.
- Jullian S., Longaygue X. // Ibid.2014. V. 362. P. 192.
- Merzougui A., Bonilla-Petriciolet A., Hasseine A., et al. // Ibid. 2015. V. 388. P. 84.
- Corazza M.L., Fouad W.A., Chapman W.G. // Ibid. 2016. V. 416. P. 130.
- Bayazıt K., Gok A., Uslu H., Kırbaslar I. // Ibid. 2014. V. 379. P. 185.
- Maghami M., Yousefi Seyf J., Sadrameli S.M., Haghtalab A. // Ibid. 2016. V. 409. P. 124.
- Mesquita F.M.R., Bessa A.M.M., de Lima D.D. // Ibid. 2012. V. 318. P. 51.
- Toikka A.M., Samarov A.A., Toikka M.A. // Russ. Chem. Rev. 2015. V. 84. № 4. P. 378.
- Trindade W.R.D., dos Santos R.G. // Renew. Sustain. Energy Rev. 2017. V. 69. P. 642.
- Soloiu V., Gaubert R., Moncada J., et al. // Renew. Energy. 2019. V. 134. P. 1173.
- Yesilyurt M.K., Eryilmaz T., Arslan M. // Energy 2018. V. 165. P. 1332.
- Kuszewski H. // Energy Fuels 2018. V. 32. P. 11619.
- Zahos-Siagos I., Antonerias A., Karonis D. // J. Energy Eng. 2018. № 5. P. 144.
- Dhamodaran G., Esakkimuthu G.S., Pochareddy Y.K., Sivasubramanian H. // Energy. 2017. V. 125. P. 726.
- Stevenson A.L., Parker A., Reggeti S.A., et al. // Proceedings of the ASME2022 ICE Forward Conference. 2022. Paper V001T05A004. ASME. doi: 10.1115/ICEF2022-90634
- Dong X., Pio G., Arafin F., et al. // J. Phys. Chem. A. 2023. V. 127. № 14.
- Hall S.., Bittle J. // SAE Technical Papers. 2023. Paper 2023-01-0267.
- Tang B.H. // Adv. Materials Research. 2012. V. 455—456. P. 1060.
- Jimenez L., Garvin A., Costa-Lopez J. // Ind. Eng. Chem. Res. 2002. V. 41. P. 6663.
- Patil K., Momin F. // Proceedings of INNOVATION2008 Regional Conference. 2008.
- Serafimov L.A., Pisarenko Y.A., Kulov N.N. // Chem. Eng. Sci. 1999. V. 54. P. 1383.
- Serafimov L.A., Frolkova A.K. // Theor. Found. Chem. Eng. 1997. V. 31. P. 159.
- Leyes C.E., Othmer D.F. // Ind. Eng. Chem. 1945. V. 37. P. 968.
- Loning S., Horst C., Hoffmann U. // Chem. Eng. Techn. 2000. V. 23. P. 789.
- Grob S., Hasse H. // J. Chem. Eng. Data. 2005. V. 50. P. 92.
- Campanella E.A., Mandagaran B.A. // Latin Amer. App. Res. 2003. V. 33. P. 313.
- Mandagaran B.A., Campanella E.A. // Chem. Prod. Proc. Modeling 2009. V. 4. № 1. Article 38.
- Zhuchkov V.I., Pisarenko Y.A., Frolkova A.K. // Theor. Found. Chem. Eng. 2009. V. 43. P. 482‒485.
- Samarov A., Naumkin P., Toikka A. // Fluid Phase Equilib. 2015. V. 403. P. 10.
- Toikka M., Smirnov A., Trofimova M., et al. // J. Chem. Eng. Data. 2023. V. 68. P. 1145.
- Ruiz B.F., Prats R.D., Gomis Y.V., Varo G.P. // Fluid Phase Equilib. 1984. V. 18. P. 171.
- Samarov A., Toikka M., Toikka A. // Fluid Phase Equilib. 2015. V. 385. P. 129.
- Smirnov A., Sadaeva A., Podryadova K., Toikka M. // Fluid Phase Equilib. 2019. V. 493. P. 102.
- Smirnov A., Samarov A., Toikka M. // J. Chem. Eng. Data 2021. V. 66. P. 1466.
- Esquivel M.M., Bernardo-Gil M.G. // Fluid Phase Equilib. 1990. V. 57. P. 307.
- Ince E., Kirbaslar S. I. // Brazilian J. Chem. Eng. 2002. V. 19. P. 243.
- Wang L., Cheng Y., Xiao X., Li X. // J. Chem. Eng. Data 2007. V. 52. P. 1255.
- Lladosa E., Monton J. B., Burguet C. M., Munoz R. // Ibid. 2008. V. 53. P. 108.
- Samarov A.A., Toikka M. A., Naumkin P. V., Toikka A. M. // Theor. Found. Chem. Eng. 2016. V. 50. P. 739.
- Toikka M.A., Samarov A. A., Sadaev A. A., et al. // Fine Chem. Techn. 2019. V. 14. P. 47.
- Toikka M., Toikka A. // Pure Appl. Chem. 2013. V. 85. P. 277.
- Senina A., Samarov A., Toikka M., Toikka A. // J. Mol. Liq. 2022. V. 345. P. 118246.
- Zharov V.T. // Russ. J. Phys. Chem. 1970. V. 44. № 8. P. 1967.
- Toikka A.M., Jenkins J. D. // Chem. Eng. J. 2002. V.89. P. 1.
- Жаров В.Т., Серафимов Л. А. Физико-химические основы дистилляции и ректификации. Л.: Химия (Ленинградское отд-ие), 1975. 239 c.
- Shalunova S.Y., Pisarenko Y. A., Shuvalov A. S., Serafimov L. A. // Theor. Found. Chem. Eng. 2004. V. 38. P. 33.
- Barbosa D., Doherty M. F. // Proc. R. Soc. London., Ser. A. 1987. V. 413. P. 443.
- Toikka A., Toikka M. // Pure Appl. Chem. 2009. V. 81. P. 1591.
- Toikka M., Sadaeva A., Samarov A., et al. // Fluid Phase Equilib. 2017. V. 451. P. 91.
- Ascani M., Sadowski G., Held C. // Molecules. 2023. V. 28. P. 1768.
- Renon H., Prausnitz J. M. // AIChE Journal. 1968. V. 14. P. 135.
- Misikov G., Toikka M., Samarov A., Toikka A. // Fluid Phase Equilib. V. 552. 2022. 113265.
- Misikov G. Kh., Petrov A. V., Toikka A. M. // Theor. Found. Chem. Eng. 2022. V. 56. P. 200.
- Misikov G., Trofimova M., Prikhodko I. // Chemistry. 2023. V. 4. P. 2542.
- Danielle L., Schwarz C. // Fluid Phase Equilib. 2022. V. 556. P. 113407.
- Reynel-Avila H.E., Bonilla-Petriciolet A., Tapia-Picazo J.C. // Fluid Phase Equilib. 2019. V. 483. P. 153.
- Zhang X., Li Y., Wu Y., et al. // J. Chem. Thermod. 2025. V. 206. P. 107483.
- Golikova A., Shasherina A., Anufrikov Y., et al. // Int. J. Mol. Sci. 2023. V. 24. P. 5137.
- Golikova A., Shasherina A., Anufrikov Y., et al. // Ibid. 2024. V. 25. 3244.
- Orjuela A., Yanez A. J., Vu D. T., et al. // Fluid Phase Equilib. 2010. V. 290. P. 63.
- Lee L.-S., Chen W.-C., Huang J.-F. // J. Chem. Eng. Japan. 1996. V. 29. P. 427.
Supplementary files


