CHEMICAL EQUILIBRIA IN THE HETEROGENEOUS COMPOSITION REGION OF THE ACETIC ACID - N-BUTYL ALCOHOL - N-BUTYL ACETATE - WATER SYSTEM AT 298.15 K AND ATMOSPHERIC PRESSURE

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

This work is devoted to studying the compositions of coexisting phases in chemical equilibrium at 298.15 K and atmospheric pressure. The system under investigation is acetic acid - n-butyl alcohol - n-butyl acetate - water. The esterification/hydrolysis reaction was carried out in the presence of a catalyst (hydrochloric acid). All results are presented in the corresponding concentration spaces. For better visualization, the compositions of chemically equilibrated phases are shown in the square of concentration α-variables. A comparative analysis of the obtained results is provided. Correlation of the experimental data using the NRTL model demonstrated satisfactory agreement between the calculated and experimental compositions.

About the authors

M. A Toikka

Saint Petersburg State University

Email: a.toikka@spbu.ru
Saint Petersburg, Russia

A. A Smirnov

Saint Petersburg State University

Email: a.toikka@spbu.ru
Saint Petersburg, Russia

G. Kh Misikov

Saint Petersburg State University

Email: a.toikka@spbu.ru
Saint Petersburg, Russia

A. M Toikka

Saint Petersburg State University

Author for correspondence.
Email: a.toikka@spbu.ru
Saint Petersburg, Russia

References

  1. Energy Technology Roadmaps of Japan. Future Energy Systems Based on Feasible Technologies Beyond 2030 / Ed.Y. Kato, M. Koyama, Y. Fukushima, T. Nakagaki. Tokyo: Springer, 2016. P. 463.
  2. Gomez-Castro F.I., Cano-Rodriguez I., Gamino-Arroyo Z. Process Intensification in the Production of Liquid Biofuels: Strategies to Minimize Environmental Impact. Process Intensification in Chemical Engineering / J. Segovia-Hernandez, A. Bonilla-Petriciolet. Cham.Springer, 2016. P. 279. doi: 10.1007/978-3-319-28392-0_10
  3. Gaurav N., Sivasankari S., Kiran G.S., et al. // Renew. Sustain. Energy Rev. 2017. V.73. P. 205.
  4. Czyrnek-Deletre M.M., Smyth B.M., Murphy J.D. // Renew. Energy. 2017. V. 105. P. 436.
  5. Ji L.Q., Zhang C., Fang J.Q. // Renew. Sustain. Energy Rev. 2017. V. 70. P. 224.
  6. Cai L., Minwegen H., Beeckmann J., et al. // Comb. Flame. 2017. V. 178. P. 257.
  7. Moreau A., Segovia J.J., Rubio J., Martin M.C. // Fluid Phase Equilib. 2016. V. 409. P. 92.
  8. Liebergesell B., Kaminski S., Pauls C., et al. // Ibid. 2015. V. 400. P. 95.
  9. Moreau A., Segovia J.J., Bermejo M.D., Martin M.C. // Ibid. 2016. V. 425. P. 177.
  10. Moreau A., Segovia J.J., Villamanan R.M., Martin M.C. // Ibid. 2014. V. 384. P. 89.
  11. Jullian S., Longaygue X. // Ibid.2014. V. 362. P. 192.
  12. Merzougui A., Bonilla-Petriciolet A., Hasseine A., et al. // Ibid. 2015. V. 388. P. 84.
  13. Corazza M.L., Fouad W.A., Chapman W.G. // Ibid. 2016. V. 416. P. 130.
  14. Bayazıt K., Gok A., Uslu H., Kırbaslar I. // Ibid. 2014. V. 379. P. 185.
  15. Maghami M., Yousefi Seyf J., Sadrameli S.M., Haghtalab A. // Ibid. 2016. V. 409. P. 124.
  16. Mesquita F.M.R., Bessa A.M.M., de Lima D.D. // Ibid. 2012. V. 318. P. 51.
  17. Toikka A.M., Samarov A.A., Toikka M.A. // Russ. Chem. Rev. 2015. V. 84. № 4. P. 378.
  18. Trindade W.R.D., dos Santos R.G. // Renew. Sustain. Energy Rev. 2017. V. 69. P. 642.
  19. Soloiu V., Gaubert R., Moncada J., et al. // Renew. Energy. 2019. V. 134. P. 1173.
  20. Yesilyurt M.K., Eryilmaz T., Arslan M. // Energy 2018. V. 165. P. 1332.
  21. Kuszewski H. // Energy Fuels 2018. V. 32. P. 11619.
  22. Zahos-Siagos I., Antonerias A., Karonis D. // J. Energy Eng. 2018. № 5. P. 144.
  23. Dhamodaran G., Esakkimuthu G.S., Pochareddy Y.K., Sivasubramanian H. // Energy. 2017. V. 125. P. 726.
  24. Stevenson A.L., Parker A., Reggeti S.A., et al. // Proceedings of the ASME2022 ICE Forward Conference. 2022. Paper V001T05A004. ASME. doi: 10.1115/ICEF2022-90634
  25. Dong X., Pio G., Arafin F., et al. // J. Phys. Chem. A. 2023. V. 127. № 14.
  26. Hall S.., Bittle J. // SAE Technical Papers. 2023. Paper 2023-01-0267.
  27. Tang B.H. // Adv. Materials Research. 2012. V. 455—456. P. 1060.
  28. Jimenez L., Garvin A., Costa-Lopez J. // Ind. Eng. Chem. Res. 2002. V. 41. P. 6663.
  29. Patil K., Momin F. // Proceedings of INNOVATION2008 Regional Conference. 2008.
  30. Serafimov L.A., Pisarenko Y.A., Kulov N.N. // Chem. Eng. Sci. 1999. V. 54. P. 1383.
  31. Serafimov L.A., Frolkova A.K. // Theor. Found. Chem. Eng. 1997. V. 31. P. 159.
  32. Leyes C.E., Othmer D.F. // Ind. Eng. Chem. 1945. V. 37. P. 968.
  33. Loning S., Horst C., Hoffmann U. // Chem. Eng. Techn. 2000. V. 23. P. 789.
  34. Grob S., Hasse H. // J. Chem. Eng. Data. 2005. V. 50. P. 92.
  35. Campanella E.A., Mandagaran B.A. // Latin Amer. App. Res. 2003. V. 33. P. 313.
  36. Mandagaran B.A., Campanella E.A. // Chem. Prod. Proc. Modeling 2009. V. 4. № 1. Article 38.
  37. Zhuchkov V.I., Pisarenko Y.A., Frolkova A.K. // Theor. Found. Chem. Eng. 2009. V. 43. P. 482‒485.
  38. Samarov A., Naumkin P., Toikka A. // Fluid Phase Equilib. 2015. V. 403. P. 10.
  39. Toikka M., Smirnov A., Trofimova M., et al. // J. Chem. Eng. Data. 2023. V. 68. P. 1145.
  40. Ruiz B.F., Prats R.D., Gomis Y.V., Varo G.P. // Fluid Phase Equilib. 1984. V. 18. P. 171.
  41. Samarov A., Toikka M., Toikka A. // Fluid Phase Equilib. 2015. V. 385. P. 129.
  42. Smirnov A., Sadaeva A., Podryadova K., Toikka M. // Fluid Phase Equilib. 2019. V. 493. P. 102.
  43. Smirnov A., Samarov A., Toikka M. // J. Chem. Eng. Data 2021. V. 66. P. 1466.
  44. Esquivel M.M., Bernardo-Gil M.G. // Fluid Phase Equilib. 1990. V. 57. P. 307.
  45. Ince E., Kirbaslar S. I. // Brazilian J. Chem. Eng. 2002. V. 19. P. 243.
  46. Wang L., Cheng Y., Xiao X., Li X. // J. Chem. Eng. Data 2007. V. 52. P. 1255.
  47. Lladosa E., Monton J. B., Burguet C. M., Munoz R. // Ibid. 2008. V. 53. P. 108.
  48. Samarov A.A., Toikka M. A., Naumkin P. V., Toikka A. M. // Theor. Found. Chem. Eng. 2016. V. 50. P. 739.
  49. Toikka M.A., Samarov A. A., Sadaev A. A., et al. // Fine Chem. Techn. 2019. V. 14. P. 47.
  50. Toikka M., Toikka A. // Pure Appl. Chem. 2013. V. 85. P. 277.
  51. Senina A., Samarov A., Toikka M., Toikka A. // J. Mol. Liq. 2022. V. 345. P. 118246.
  52. Zharov V.T. // Russ. J. Phys. Chem. 1970. V. 44. № 8. P. 1967.
  53. Toikka A.M., Jenkins J. D. // Chem. Eng. J. 2002. V.89. P. 1.
  54. Жаров В.Т., Серафимов Л. А. Физико-химические основы дистилляции и ректификации. Л.: Химия (Ленинградское отд-ие), 1975. 239 c.
  55. Shalunova S.Y., Pisarenko Y. A., Shuvalov A. S., Serafimov L. A. // Theor. Found. Chem. Eng. 2004. V. 38. P. 33.
  56. Barbosa D., Doherty M. F. // Proc. R. Soc. London., Ser. A. 1987. V. 413. P. 443.
  57. Toikka A., Toikka M. // Pure Appl. Chem. 2009. V. 81. P. 1591.
  58. Toikka M., Sadaeva A., Samarov A., et al. // Fluid Phase Equilib. 2017. V. 451. P. 91.
  59. Ascani M., Sadowski G., Held C. // Molecules. 2023. V. 28. P. 1768.
  60. Renon H., Prausnitz J. M. // AIChE Journal. 1968. V. 14. P. 135.
  61. Misikov G., Toikka M., Samarov A., Toikka A. // Fluid Phase Equilib. V. 552. 2022. 113265.
  62. Misikov G. Kh., Petrov A. V., Toikka A. M. // Theor. Found. Chem. Eng. 2022. V. 56. P. 200.
  63. Misikov G., Trofimova M., Prikhodko I. // Chemistry. 2023. V. 4. P. 2542.
  64. Danielle L., Schwarz C. // Fluid Phase Equilib. 2022. V. 556. P. 113407.
  65. Reynel-Avila H.E., Bonilla-Petriciolet A., Tapia-Picazo J.C. // Fluid Phase Equilib. 2019. V. 483. P. 153.
  66. Zhang X., Li Y., Wu Y., et al. // J. Chem. Thermod. 2025. V. 206. P. 107483.
  67. Golikova A., Shasherina A., Anufrikov Y., et al. // Int. J. Mol. Sci. 2023. V. 24. P. 5137.
  68. Golikova A., Shasherina A., Anufrikov Y., et al. // Ibid. 2024. V. 25. 3244.
  69. Orjuela A., Yanez A. J., Vu D. T., et al. // Fluid Phase Equilib. 2010. V. 290. P. 63.
  70. Lee L.-S., Chen W.-C., Huang J.-F. // J. Chem. Eng. Japan. 1996. V. 29. P. 427.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).