STABILITY OF CADMIUM(II) GLYCYLLGYLCINATE COMPLEXES IN AQUEOUS-DIMETHYL SULFOXIDE SOLUTIONS

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The stability constants of cadmium(II) complexes with the glycylglycinate anion in aqueous dimethyl sulfoxide (DMSO) solutions were determined by potentiometric titration at 298 K and an ionic strength of 0.1 M. An increase in DMSO concentration in the solution leads to higher stability of cadmium(II) glycylglycinate complexes. Using both experimental and literature data, the Gibbs transfer energies of cadmium(II) glycylglycinate complexes from water to aqueous–DMSO solvent mixtures were calculated, and the contribution of reagent resolution to the change in Gibbs energy of the complex formation reaction was analyzed. It was shown that the enhanced stability of cadmium(II) glycylglycinate complexes in aqueous DMSO solutions is mainly due to weakened solvation of the ligand.

About the authors

V. A Isaeva

Ivanovo State University of Chemistry and Technology

Author for correspondence.
Email: kvol1969@gmail.com
Ivanovo, Russia

O. A Bezrukova

Ivanovo State University of Chemistry and Technology

Email: kvol1969@gmail.com
Ivanovo, Russia

References

  1. Di Natale C., De Benedictis I., De Benedictis A., Marasco D. // Antibiotics. 2020. V. 9. № 6. P. 337. https://doi.org/10.3390/antibiotics9060337
  2. Sun X., Sarteshnizi R.A., Boachie R.T., et al. // Foods. 2020. V. 9. № 10. P. 1402. https://doi.org/10.3390/foods9101402
  3. Хавинсон В.Х. // Клиническая медицина. 2020. Т. 98. № 3. С. 165. https://doi.org/10.30629/0023-2149-2020-98-3-165177
  4. Pintea A., Manea A., Pintea C., et al. // Biomolecules. 2025. V. 15. № 1. P. 88. https://doi.org/10.3390/biom15010088
  5. Gooding J.J. // Comprehens. Analyt. Chem. 2007. V. 49. P. 189. https://doi.org/10.1016/S0166-526X(06)49010-3
  6. Mehdipour N., Rezaei M., Mahidashti Z. // Int. J. Minerals, Metallurgy and Materials. 2020. V. 27. № 4. P. 544. https://doi.org/10.1007/s12613-020-1975-6
  7. Luo Y., Zhang Y., Xiong Z., et al. // Int. J. Mol. Sci. 2024. V. 25. № 12. P. 6717. doi: 10.3390/ijms25126717
  8. Фазлыева А.С., Даукаев Р.А., Каримов Д.О. // Медицина труда и экология человека. 2022. № 1. С. 220. DOI: http://dx.doi.org/10.24411/2411-3794-202210115
  9. Haider F.U., Liqun C., Coulter J.A., et al. // Ecotoxic. Environment. Safety. 2021. V. 211. Р. 11887. https://doi.org/10.1016/j.ecoenv.2020.111887
  10. Титов А.Ф., Казнина Н.М., Таланова В.В. Тяжелые металлы и растения. Петрозаводск: Карельский научн. центр РАН, 2014. 194 с.
  11. Голубева И.С., Бармашов А.Е., Рудакова А.А. и др. // Рос. биотерапевтич. журн. 2017. Т. 16. № 3. С. 75.
  12. Дуран Дельгадо О.А., Скибина Л.М. // Вестн. ТГТУ. 2019. Т. 25. № 4. С. 635. doi: 10.17277/vestnik.2019.04.pp.635—643
  13. Kuznetsov V.V., Pavlov L.N., Filatova E.A., Vinokurov E.G. // J. Solid State Electrochem. 2020. V. 24. № 7. Р. 1711. https://doi.org/10.1007/s10008-020-04723-x
  14. Bowden N.A., Sanders J.P.M., Bruins M.E. // J. Chem. Eng. Data. 2018. V. 63. № 3. P. 488. https://doi.org/10.1021/acs.jced.7b00486
  15. Do H.T., Franke P., Volpert S., et al. // Phys. Chem. Chem. Phys. 2021. V. 23. № 18. Р. 10852. https://doi.org/10.1039/D1CP00005E
  16. Кустова Т.П., Кочетова Л.Б. // Изв. вузов. Химия и хим. технология. 2023. Т. 66. Вып. 12. С. 41. doi: 10.6060/ivkkt.20236612.6892.
  17. Авдеева В.В., Кубасов А.С., Никифорова С.Е., и др. // Журн. неорган. химии. 2023. Т. 68. № 10. С. 1413. doi: 10.31857/S0044457X23601165 Avdeeva V.V., Kubasov A.S., Nikiforova S.E., et al.// Russ. J. Inorg. Chem. 2023. V. 68. № 10. P. 1406. doi: 10.1134/S0036023623601794
  18. Сюй Б., Яо В., Юй С., и др. // Координац. химия. 2023. Т. 49. № 12. С. 731. DOI: 10.31857/ S0132344X23600133 Xu B., Yao W., Yu X, et al. // Russ. J. Coord. Chem. 2023. V. 49. № 12. Р. 771. doi: 10.1134/S1070328423600316
  19. Fritz R., Ruth W., Kragl U. // Rapid Communic. Mass Spectrom. 2009. V. 23. № 14. Р. 2139. https://doi.org/10.1002/rcm.4122
  20. Таланов В.М., Житный Г.М. Ионные равновесия в водных растворах. М.: Академия Естествознания, 2007. 94 с.
  21. Kustin K, Pasternack R.F. // J. Phys. Chem. 1969. V. 73. № 1. P. 1. https://doi.org/10.1021/j100721a001
  22. Nag K., Banerjee P. // J. Inorg. Nucl. Chem. 1974. V. 36. № 9. P. 2145. https://doi.org/10.1016/00221902(74)80740-2
  23. Hodgson J.B., Percy G.C., Thornton D.A. // Spectroscop. Letter. 1979. V. 12. № 4. P. 297. doi: 10.1080/00387017908069156
  24. Rabin B.R. // Trans. Farad. Soc. 1956. V. 52. P. 1130. https://doi.org/10.1039/TF9565201130
  25. Brunetti A.P., Burke E.J., Lim M.-C., Nancollas G.H. // J. Sol. Chem. 1972. V. 1. № 2. P. 153. doi: 10.1007/bf01028451
  26. Rainer M.J.A., Rode B.M. // Inorg. Chim. Acta. 1982. V. 58. P. 59. doi: 10.1016/S0020-1693(00)90223-8
  27. Sovago I., Varnagy K. // Met. Ions Life Sci. 2013. V. 11. P. 275. doi: 10.1007/978-94-007-5179-8_9.
  28. Исаева В.А., Молчанов А.С., Кипятков К.А., Шарнин В.А. // Журн. физ. химии. 2020. Т. 94. № 2. С. 182. doi: 10.31857/S0044453720020132 Isaeva V.A., Sharnin V.A., Molchanov A.S., Kipyatkov K.A. // Russ. J. Phys. Chem. A. 2020. V. 94. № 2. С. 249. doi: 10.1134/S0036024420020132
  29. Branica-Jurkovic G., Simeon V. // J. Electroanal. Chem. 1989. V. 266. № 1. P. 83. https://doi.org/10.1016/0022-0728(89)80217-7
  30. Кочергина Л.А., Емельянов А.В. // Журн. неорган. химии. 2013. Т. 58. № 5. С. 691. Kochergina L.A., Emel’yanov A.V. // Russ. J. Inorg. Chem. 2013. V. 58. № 5. P. 612. doi: 10.1134/S0036023613050112
  31. Бородин В.А., Козловский Е.В., Васильев В.П. // Там же. 1986. Т. 31. № 1. С. 10.
  32. Наумов В.В., Исаева В.А., Шарнин В.А., Кузина Е.Н. // Журн. физ. химии. 2011. Т. 85. № 10. С. 1881. Naumov V.V., Isaeva V.A., Sharnin V.A., Kuzina E.N. Russ. J. Phys. Chem. A. 2011. V. 85. № 10. С. 1752. doi: 10.1134/S003602441110013X
  33. Bosch E., Fonrodona G., Rafols C., Roses M. // Anal. Chim. Acta. 1997. V. 349. № 1—3. P. 367. https://doi.org/10.1016/S0003-2670(97)00191-8
  34. Lu Ai-ru, Pettit L.D., Gregor J.E. // J. Chem. Chin. Univ. 1992. V. 13. № 3. P. 322. http://www.cjcu.jlu.edu.cn/EN/Y1992/V13/I3/322
  35. Li N.C., Chen M.C.M. // J. Amer. Chem. Soc. 1958. V. 80. № 21. P. 5678. https://doi.org/10.1021/ja01554a024
  36. Patel A.K., Joshi J.D. // J. Indian Chem. Soc. 1997. V. 74. P. 222. doi: 10.5281/zenodo.5889737
  37. Vaidyan A.V., Bhattacharya P.K. // Can. J. Chem. 1994. V. 72. № 4. P. 1107. https://doi.org/10.1139/v94-140
  38. Sovago I., Varnagy K., Benyei A. // Magyar Kem. Folyoirat. 1986. V. 92. P. 114. https://real-j.mtak.hu/8518/1/MTA_MagyarChemiaiFolyoirat_1986_092.pdf
  39. Vaissermann J., Quintin M. // J. Chim. Phys. 1966. V. 63. Р. 731. DOI: https://doi.org/10.1051/jcp/1966630731
  40. Zekarias M.T., Rao G.N. // S. Afr. J. Chem. 2012. V. 65. P. 258. http://journals.sabinet.co.za/sajchem/
  41. Наумов В.В. Исаева В.А., Ковалева Ю.А., Шарнин В.А. // Журн. физ. xимии. 2013. Т. 87. № 7. С. 1160. doi: 10.7868/S0044453713070236 Naumov V.V., Isaeva V.A., Kovaleva Y.A., Sharnin V.A. // Russ. J. Phy. Chem. A. 2013. V. 87. № 7. С. 1135. doi: 10.1134/S0036024413070224.
  42. Исаева В.А., Молчанов А.С., Шишкин М.В., Шарнин В.А. // Журн. неорган. химии. 2022. Т. 67. № 5. С. 629. doi: 10.31857/S0044457X22050087 Isaeva V.A., Sharnin V.A., Molchanov A.S., Shishkin M.V. // Russ. J. Inorg. Chem. 2022. V. 67. № 5. С. 699. doi: 10.1134/S0036023622050084
  43. Шарнин В.А., Усачева Т.Р., Кузьмина И.А., и др. Комплексообразование в неводных средах: сольватационный подход к описанию роли растворителя. М.: ЛЕНАНД, 2019. 304 с.
  44. Леденков С.Ф., Чистякова Г.В. // Журн. физ. химии. 2003. Т. 77. № 4. С. 600. Ledenkov S.F., Chistyakova G.V. // Russ. J. Phys. Chem. A. 2003. V. 77. № 4. С. 527
  45. Comuzzi C., Grespan M., Melchior A., et al. // Eur. J. Inorg. Chem. 2001. P. 3087. https://doi.org/10.1002/10990682(200112)2001:12<3087:: AID-EJIC3087>3.0.CO;2-4
  46. Исаева В.А., Безрукова О.А. // Журн. общ. химии. 2024. Т. 94. № 11—12. С. 1112. doi: 10.31857/S0044460X24110062
  47. Chaturvedi D.N., Gupta C.M. // Z. Anal. Chem. 1972. V. 260. P. 120. https://doi.org/10.1007/BF00428805
  48. Kumar S., Gupta O.D. // Orient. J. Chem. 2010. V. 26. № 2. P. 697. http://www.orientjchem.org/?p=24203
  49. Naik K.B.K., Kumar B.A., Raju S., Rao G.N. // Intern. J. Inorg. Chem. 2012. Article ID265249. doi: 10.1155/2012/265249
  50. Rao C.N., Ramanaiah M., Sailaja B.B.V. // Bull. Chem. Soc. Ethiop. 2016. V. 30. № 1. P. 71. DOI: http://dx.doi.org/10.4314/bcse.v30i1.6
  51. Choppa N.R., Bogi S., Vasireddy G.K., Sailaja B.B.V. // Pharm. Chem. 2015. V. 7. № 6. P. 8. http://derpharmachemica.com/archive.html
  52. Karadia C., Gupta O.D. // Rasayan J. Chem. 2009. V. 2. № 2. P. 403. https://rasayanjournal.co.in/vol‑2/issue‑2/28.pdf
  53. Kalidas C., Hefter G., Marcus Y. // Chem. Rev. 2000. V. 100. № 3. Р. 819. doi: 10.1021/cr980144k
  54. Наумов В.В., Исаева В.А., Кузина Е.Н., Шарнин В.А. // Журн. физич. химии. 2012. Т. 86. № 12. С. 1907. Naumov V.V., Isaeva V.A., Kuzina E.N., Sharnin V.A. // Russ. J. Phys. Chem. A. 2012. V. 86. № 12. P. 1773. doi: 10.1134/S0036024412120175
  55. Гессе Ж.Ф., Исаева В.А., Шарнин В.А. // Журн. физ. химии. 2010. Т. 84. № 2. С. 385. Gesse Zh.F., Isaeva V.A., Sharnin V.A. // Russ. J. Phys. Chem. A. 2010. V. 84. № 2. С. 329. doi: 10.1134/S0036024410020299
  56. Исаева В.А., Шарнин В.А., Шорманов В.А., Леденков С.Ф. // Координац. химия. 1995. Т. 21. № 5. С. 396.
  57. Фадеев Ю.Ю., Шарнин В.А., Шорманов В.А. // Журн. неорган. химии. 1997. Т. 42. № 7. С. 1220.
  58. El-Ezaby M.S., Al-Hassan J.M., Eweiss N.F., Al-Massaad F. // Canad. J. Chem. 1979. V. 57. № 1. Р. 104. https://doi.org/10.1139/v79-017
  59. Casale A., De Robertis A., De Stefano C et al.// Thermochim. Acta. 1995. V. 255. P. 109. https://doi.org/10.1016/0040-6031(94)02181-M)
  60. Thanavelan R., Ramalingam G., Manikandan G., Thanikachalam V. // J. Saudi Chem. Soc. 2014. V. 18. № 3. P. 227. https://doi.org/10.1016/j.jscs.2011.06.016
  61. Исаева В.А., Наумов В.В., Гессе Ж.Ф., Шарнин В.А. // Координац. химия. 2008. Т. 34. № 8. С. 631. Isaeva V.A., Naumov V.V., Gesse Zh.F., Sharnin V.A. // Russ. J. Coord. Chem. 2008. V. 34. № 8. С. 624. doi: 10.1134/S1070328408080113
  62. Kajala A., Gupta O.D. // Rasayan J. Chem. 2009. V. 2. № 4. P. 833. https://rasayanjournal.co.in/vol‑2/issue‑4/9.pdf
  63. Banu L., Blagojevic V., Bohme D.K. // Int. J. Mass Spectrometry. 2012. V. 330—332. P. 168. http://dx.doi.org/10.1016/j.ijms.2012.07.012
  64. Murphy J.M., Powell B.A., Brumaghim J.L. // Coord. Chem. Rev. 2020. V. 412. P. 213253. https://doi.org/10.1016/j.ccr.2020.213253

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).