First-principles study of tritium behavior in molten FLiBe

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The behavior of tritium in molten FLiBe, including in the presence of He in it, is studied at operating temperatures of MSR. The presence of helium in the fluoride melt is found to insignificantly change the partial function of the tritium-fluorine radial distribution. In the molten salt, preferential binding of tritium to one and two fluorine ions is observed when the bond length between tritium and fluorine is limited by the radius of the first coordination sphere. Tritium is shown to bind more frequently to one fluorine ion at 1073 K, yet this advantage is not apparent in the presence of He, and the tritium coordination changes more frequently. Lower temperatures (T ≤ 973 K) contribute to binding of 3H to two fluorine ions, but the presence of He, which creates an effect of the increasing temperature, can break this trend. Tritium is concluded to very rarely form bonds simultaneously with three fluorine ions. The form of tritium binding by fluorine affects the kinetic characteristics of tritium in molten FLiBe.

About the authors

A. E. Galashev

Institute of High Temperature Electrochemistry, Ural Branch of the Russian Academy of Sciences; Ural Federal University named after the first President of Russia, Boris Yeltsin

Email: galashev@ihte.uran.ru
Ekaterinburg, Russia; Ekaterinburg, Russia

A. F. Anisimov

Institute of High Temperature Electrochemistry, Ural Branch of the Russian Academy of Sciences

Ekaterinburg, Russia

References

  1. Lam S.T., Li Q.-J., Mailoa J. et al. // J. Mater. Chem. A. 2021. V. 9. № 3. P. 1784. https://doi.org/10.1039/d0ta10576g
  2. Galashev A.Y., Rakhmanova O.R., Abramova K.A. et al. // J. Phys. Chem. B2023. V. 127. № . 5. P. 1197 https://doi.org/10.1021/acs.jpcb.2c06915
  3. Forsberg C.W., Lam S., Carpenter D.M., et al. // Nucl. Technol. 2017. V. 197. № 2. P. 119. https://doi.org/10.13182/NT16-101
  4. Шишкова Т.А., Голубева А.В., Розенкевич М.Б.// Журн.физ.химии. 2023. Т. 97. № 10. С. 1371. https://doi.org/10.31857/S0044453723100205 [Shishkova T.A., Golubeva A.V., Rozenkevich M.B.// Rus. J. Phys. Chem. A Т. 97. № 10. P. 2079. https://doi.org/10.31857/S0044453723100205]
  5. Guo S., Zhang J., Wu W., Zhou W. // Prog. Mater. Sci. 2018. V. 97. P. 448. https://doi.org/10.1016/j.pmatsci.2018.05.003
  6. Kamei T. // Sustainability 2012. V. 4. № 10. P. 2399. https://doi.org/10.3390/su4102399
  7. Cantor S., Ward W.T., Moynihan C.T. // J. Chem. Phys. 1969. V. 50. № 7. P. 2874. https://doi.org/10.1063/1.1671478
  8. Soler J.M., Artacho E., Gale J.D., et al. // J. Phys. Condens. Matter. 2002. V. 14. № 11. P. 2745. https://doi.org/10.1088/0953-8984/14/11/302
  9. Perdew J.P., Burke K., Ernzerhof M. // Phys. Rev. Lett. 1996. V. 77. P. 3865. https://doi.org/10.1103/PhysRevLett.78.1396
  10. Kurth S, Perdew J.P., Blaha P. // Int. J. Quantum Chem. 1999. V. 75. № 4—5. P. 889. http://dx.doi.org/10.1002/(SICI)1097-461X(1999)75:4/5<889:: AID-QUA54>3.0.CO;2-8
  11. Staroverov V.N., Scuseria G.E., Tao J., Perdew J.P. // Phys. Rev. B2004. V. 69. P. 075102. https://doi.org/10.1103/PhysRevB.69.075102
  12. Nose S.J. // Chem. Phys. 1984. V. 81. № 1. P. 511. https://doi.org/10.1063/1.447334
  13. Тойкка А.М., Мисиков Г.Х., Тойкка М.А. // Журн.физ.химии. 2023. Т. 97. № 6. С. 773. https://doi.org/10.31857/S0044453723060262 [Toikkaa A.M., Misikova G. Kh., Toikkaa M.A. // Rus. J. Phys. Chem. A, 2023. V. 97. № 6. P. 1098. https://doi.org/ 10.1134/S0036024423060262].
  14. Галашев А.Е., Анисимов А.Ф., Воробьев А.С. // Там же. 2023. Т. 97. № 12. С. 1690. https://doi.org/10.31857/S0044453723120099 [Galashev A.Y., Anisimov A.F., Vorob’ev A.S. // Rus. J. Phys. Chem. A 2023. V. 97. № 12. P. 2656. https://doi.org/10.1134/S0036024423120099]
  15. Calderoni P., Sharpea P., Hara M., Oya Y. // Fusion Eng. Design 2008. V. 83. 1331—1334. https://doi.org/10.1016/j.fusengdes.2008.05.01

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).