Photocatalytic oxidation of oxalic acid by oxygen and ozone in aqueous solution
- Authors: Levanov A.V.1, Lapina A.V.2, Isaikina O.Y.1
-
Affiliations:
- M. V. Lomonosov Moscow State University
- Branch of M. V. Lomonosov Moscow State University in Baku
- Issue: Vol 99, No 2 (2025)
- Pages: 351-360
- Section: ФОТОХИМИЯ, МАГНЕТОХИМИЯ, МЕХАНОХИМИЯ
- Submitted: 19.05.2025
- Accepted: 19.05.2025
- Published: 20.05.2025
- URL: https://ogarev-online.ru/0044-4537/article/view/292498
- DOI: https://doi.org/10.31857/S0044453725020228
- EDN: https://elibrary.ru/DCPHUF
- ID: 292498
Cite item
Abstract
Experimental study of mineralization of oxalic acid Н2С2О4 and some other oxidation-resistant organic compounds in an aqueous solution under the action of oxygen, ozone, and ultraviolet radiation is performed. It is found that in acidic solutions Н2С2О4 is not oxidized under the action of ozone or UV-irradiation in the presence of oxygen; under simultaneous action of O3 + UV, oxidation with low rate is observed. The possibility of photocatalysis of mineralization process by ions Mn2+, MnO4–, Fe3+, Со2+, BrO3–, or IO3– is studied. Fe3+ ions are the most effective photocatalyst as there is a rather fast oxidation of oxalic acid to CO2 in their presence and under UV-irradiation both under the action of O3 and O2. The conditions of maximum ozone conversion at oxalic acid photomineralization are found. The possibility of oxidative destruction of more oxidation-resistant substrate - acetic acid - at ozonation and UV-irradiation of solutions with Fe(III) and Н2С2О4 additives is shown.
Keywords
About the authors
A. V. Levanov
M. V. Lomonosov Moscow State University
Author for correspondence.
Email: levanovav@my.msu.ru
Department of Chemistry
Russian Federation, MoscowA. V. Lapina
Branch of M. V. Lomonosov Moscow State University in Baku
Email: levanovav@my.msu.ru
Azerbaijan, Baku
O. Y. Isaikina
M. V. Lomonosov Moscow State University
Email: levanovav@my.msu.ru
Department of Chemistry
Russian Federation, MoscowReferences
- Baird C., Cann M. Environmental Chemistry. 5 ed. New York: W.H. Freeman & Co., 2012.
- Beltran F.J. Ozone Reaction Kinetics for Water and Wastewater Systems. Boca Raton (Florida, USA): Lewis Publishers, CRC Press LLC, 2004.
- Lim S., Shi J.L., Von Gunten U., Mccurry D.L. // Water Res. 2022. V. 213. P. 118053.
- Marcì G., García-López E., Palmisano L. // J. Appl. Electrochem. 2008. V. 38. № 7. P. 1029.
- Bangun J., Adesina A.A. // Applied Catalysis A: General. 1998. V. 175. № 1. P. 221.
- Michael K.M., Rizvi G.H., Mathur J.N., Ramanujam A. // J. Radioanalyt. Nucl. Chem. 2000. V. 246. № 2. P. 355.
- Ganesh S., Desigan N., Chinnusamy A., Pandey N.K. // Ibid. 2021. V. 328. № 3. P. 857.
- Ананьев А.В., Тананаев И.Г., Шилов В.П. // Успехи химии. 2005. Т. 74. № 11. С. 1132. [Ananiev A.V., Tananaev I.G., Shilov V.P. // Russ. Chem. Rev. 2005. V. 74. № 11. P. 1039.]
- Von Sonntag C., Von Gunten U. Chemistry of Ozone in Water and Wastewater Treatment. From Basic Principles to Applications. London: IWA Publishing, 2012.
- Hoigné J., Bader H. // Water Res. 1983. V. 17. № 2. P. 185.
- Kuhn H.J., Braslavsky S.E., Schmidt R. // Pure Appl. Chem. 2004. V. 76. № 12. P. 2105.
- Parker C.A., Bowen E.J. // Proc. Roy. Soc. London A. 1953. V. 220. № 1140. P. 104.
- Hatchard C.G., Parker C.A., Bowen E.J. // Proc. Roy. Soc. London A. 1956. V. 235. № 1203. P. 518.
- Rabani J., Mamane H., Pousty D., Bolton J.R. // Photochem. Photobiol. 2021. V. 97. № 5. P. 873–902.
- Goldstein S., Rabani J. // J. Photochem. Photobiol. A. 2008. V. 193. № 1. P. 50.
- Леванов А.В., Исайкина О.Я., Грязнов Р.А. // Кинетика и катализ. 2022. Т. 63. № 2. С. 203. [Levanov A.V., Isaikina O.Y., Gryaznov R.A. // Kinetics and Catalysis. 2022. V. 63. № 2. P. 180.]
- Леванов А.В., Исайкина О.Я., Гасанова Р.Б., Лунин В.В. // Журн. физ. химии. 2017. Т. 91. № 8. С. 1307. [Levanov A.V., Isaikina O.Y., Gasanova R.B., Lunin V.V. // Russ. J. Phys. Chem. A. 2017. V. 91. № 8. P. 1427.]
- Леванов А.В., Кусков И.В., Зосимов А.В. и др. // Журн. аналит. химии. 2003. Т. 58. № 5. С. 496. [Levanov A.V., Kuskov I.V., Zosimov A.V. et al. // J. Anal. Chem. 2003. V. 58. № 5. P. 439.]
- Леванов А.В., Исайкина О.Я., Харланов А.Н. // Журн. физ. химии. 2020. Т. 94. № 11. С. 1616. [Levanov A.V., Isaikina O.Y., Kharlanov A.N. // Russ. J. Phys. Chem. A. 2020. V. 94. № 11. P. 2219.]
- Mao S., Chen Z., An X., Shen W. // J. Phys. Chem. A. 2011. V. 115. № 22. P. 5560.
- Wayne R.P. // Atmospheric Environment. 1987. V. 21. № 8. P. 1683.
- Bauer D., D’ottone L., Hynes A.J. // Phys. Chem. Chem. Phys. 2000. V. 2. № 7. P. 1421.
- Smith G.D., Molina L.T., Molina M.J. // J. Phys. Chem. A. 2000. V. 104. № 39. P. 8916.
- Taniguchi N., Takahashi K., Matsumi Y. // Ibid. 2000. V. 104. № 39. P. 8936.
- Wilkinson F., Helman W.P., Ross A.B. // J. Phys. Chem. Ref. Data. 1995. V. 24. № 2. P. 663.
- Biedenkapp D., Hartshorn L.G., Bair E.J. // Chem. Phys. Lett. 1970. V. 5. № 6. P. 379.
- Reisz E., Schmidt W., Schuchmann H.P., Von Sonntag C. // Env. Sci. Tech. 2003. V. 37. № 9. P. 1941.
- Sehested K., Getoff N., Schwoerer F. et al. // J. Phys. Chem. 1971. V. 75. № 6. P. 749.
- Ершов Б.Г., Яната Э., Алам М.С., Гордеев А.В. // Изв. Академии наук. Сер. химическая. 2008. № 6. С. 1165. [Ershov B.G., Janata E., Alam M.S., Gordeev A.V. // Russ. Chem. Bull. 2008. V. 57. № 6. P. 1187.]
- Ершов Б.Г., Яната Э., Алам М.С., Гордеев А.В. // Химия высоких энергий. 2008. Т. 42. № 1. С. 5. [Ershov B.G., Janata E., Alam M.S., Gordeev A.V. // High Energy Chem. 2008. V. 42. № 1. P. 1.]
- Zuo Y., Hoigne J. // Env. Sci. Tech. 1992. V. 26. № 5. P. 1014.
- Zuo Y., Hoigné J. // Atmospheric Environment. 1994. V. 28. № 7. P. 1231.
- Martell A.E., Smith R.M. Critical Stability Constants. V. 5. First Supplement. New York: Plenum Press, 1982.
- Pilz F.H., Lindner J., Vöhringer P. // Phys. Chem. Chem. Phys. 2019. V. 21. № 43. P. 23803.
- Pozdnyakov I.P., Kel O.V., Plyusnin V.F. et al. // J. Phys. Chem. A. 2008. V. 112. № 36. P. 8316.
Supplementary files
