Physicochemical properties and functioning of negative electrodes with lead-based coatings as part of reserve chemical power sources
- Authors: Shcheglov P.A.1, Samsonov D.A.1, Pavlenkov A.B.1, Kulova T.L.2, Rychagov A.Y.2, Skundin A.M.2, Postnova E.Y.3
-
Affiliations:
- JSC Scientific and Production Association Pribor named after S. S. Golembiovsky
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences
- Yu. A. Osipyan Institute of Solid State Physics, Russian Academy of Sciences
- Issue: Vol 99, No 2 (2025)
- Pages: 339-350
- Section: ЭЛЕКТРОХИМИЯ. ГЕНЕРАЦИЯ И АККУМУЛИРОВАНИЕ ЭНЕРГИИ ИЗ ВОЗОБНОВЛЯЕМЫХ ИСТОЧНИКОВ
- Submitted: 19.05.2025
- Accepted: 19.05.2025
- Published: 20.05.2025
- URL: https://ogarev-online.ru/0044-4537/article/view/292497
- DOI: https://doi.org/10.31857/S0044453725020211
- EDN: https://elibrary.ru/DCSOQX
- ID: 292497
Cite item
Abstract
Physicochemical properties of lead coating on steel substrates obtained by the galvanic method are studied by atomic force microscopy, scanning electron microscopy, X-ray diffraction phase analysis, voltammetry, and chronopotentiometry. The influence of the surface oxidized layer and through pores in the lead coating on the functioning of this coating as an anode of chemical power sources is studied. It is shown that at positive temperatures the process of anodic oxidation of the steel substrate can contribute to functioning of the anode at discharge. High discharge characteristics of lead-coated anodes without barrier layers on a steel substrate at temperatures from -50 to +50°C are confirmed by tests of pilot batches of reserve power sources of the Pb/HClO4/PbO2 system. Application of POS 63 tin-lead alloy on a copper substrate is shown to be promising for manufacturing anodes of chemical power sources.
About the authors
P. A. Shcheglov
JSC Scientific and Production Association Pribor named after S. S. Golembiovsky
Author for correspondence.
Email: godforsaken@inbox.ru
Russian Federation, Moscow, 117587
D. A. Samsonov
JSC Scientific and Production Association Pribor named after S. S. Golembiovsky
Email: godforsaken@inbox.ru
Russian Federation, Moscow, 117587
A. B. Pavlenkov
JSC Scientific and Production Association Pribor named after S. S. Golembiovsky
Email: godforsaken@inbox.ru
Russian Federation, Moscow, 117587
T. L. Kulova
A. N. Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences
Email: tkulova@mail.ru
Russian Federation, Moscow, 119071
A. Y. Rychagov
A. N. Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences
Email: tkulova@mail.ru
Russian Federation, Moscow, 119071
A. M. Skundin
A. N. Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences
Email: tkulova@mail.ru
Russian Federation, Moscow, 119071
E. Y. Postnova
Yu. A. Osipyan Institute of Solid State Physics, Russian Academy of Sciences
Email: tkulova@mail.ru
Russian Federation, Chernogolovka, Moscow region, 142432
References
- Wong C., Yang E., Yan X.-T., Gu D. // Syst. Sci. Control Eng. 2018. V. 6. № 1. P. 213. https://doi.org/10.1080/21642583.2018.1477634
- Handbook of Batteries / Ed.D. Linden and T.B. Reddy. New York, Chicago, etc.: McGraw-Hill, 2002. 1453 p.
- Bagotsky V.S., Skundin A.M., Volfkovich Yu.M. Electrochemical Power Sources: Batteries, Fuel Cells, and Supercapacitors. Hoboken, N.J.: John Willey & Sons, 2015. 400 p. https://doi.org/10.1002/9781118942857
- Yoon S.-H., Son J.-T., Oh J.-S. // J. Power Sources. 2006. V. 162. № 2. P. 1421. https://doi.org/10.1016/j.jpowsour.2006.07.051
- Lead is not dead: Three Ways that Lead Can Prove its Place in the Energy Transition. Wood Mackenzie, UK. Текст: электронный // www.woodmac.com: [сайт]. 2020. 16 июня. URL: woodmac.com/news/opinion/lead-is-not-dead (дата обращения: 29.03.2024).
- Riegel B. Lead is not dead – It’s a Critical Foundation for Europe’s low Carbon Future. Hoppecke Batterien GmbH & Co. KG, BRD. Текст: электронный // chargethefutere.org: [сайт]. 2020. 19 окт. URL: https://chargethefutere.org/blog/lead-is-not-dead-its-a-critical-foundation-for-europes-low-carbon-future (дата обращения: 29.03.2024).
- The world lead Factbook 2023. International Lead and Zinc Study Group, Portugal. Текст: электронный // www.ilzsg.org: [сайт]. 2023. URL: https://www.ilzsg.org/wp-content/uploads/SitePDFs/1_ILZSG%20World%20Lead%20Factbook%202023.pdf (дата обращения: 29.03.2024).
- White J.C., Power W.H., McMurtrie R.L., Pierce Jr.R.T. // Trans. Electrochem. Soc. 1947. V. 91. № 1. P. 73. https://doi.org/10.1149/1.3071768
- Brook P.A., Davies A.E. The Tin-Lead Dioxide Reserve Cell // J. Appl. Chem. 1956. V. 6. № 4. P. 174. https://doi.org/10.1002/jctb.5010060409
- Schrodt J.P., Otting W.J., Schoegler J.O., Craig D.N. // Trans. Electrochem. Soc. 1946. V. 90. № 1. P. 405–417. https://doi.org/10.1149/1.3071755
- Шпекина В.И., Савельева Е.А., Горбачева Е.Ю., Соловьева Н.Д. // Электрохимическая энергетика. 2014. Т. 14. № 4. С. 214. https://doi.org/10.18500/1608-4039-2014-14-4-214-217
- Шпекина В.И. Разработка технологии электроосаждения диоксида свинца на различные подложки в ультразвуковом поле. Дис. … канд. техн. наук. Саратов, ФГБОУ ВО “Саратовский государственный технический университет имени Гагарина Ю.А.”. 2016. 136 с.
- Щеглов П.А., Самсонов Д.А., Павленков А.Б. и др. // Электрохимия. 2023. Т. 59. № 12. С. 824. https://doi.org/10.31857/S0424857023120125 [Shcheglov P.A., Samsonov D.A., Pavlenkov A.B. et al. // Russ. J. Electrochem. 2023. V. 59. № 12. P. 1062. https://doi.org/10.1134/S1023193523120121]
- Щеглов П.А., Самсонов Д.А., Павленков А.Б. и др. // Журн. физ. химии. 2023. Т. 97. № 12. С. 1783. https://doi.org/10.31857/S0044453723120269 [Shcheglov P.A., Samsonov D.A., Pavlenkov A.B. et al. // Russ. J. Phys. Chem. A. 2023. V. 97. № 12. P. 2836. https://doi.org/10.1134/S0036024423120269]
- Shcheglov P.A., Samsonov D.A., Pavlenkov A.B. et al. // Chimica Techno Acta. 2024. V. 11. № 1. Article № 202411103. https://doi.org/10.15826/chimtech.2024.11.1.03
- Shcheglov P.A., Samsonov D.A., Pavlenkov A.B. et al. // Russ. J. Phys. Chem. A. 2024. V. 98. № 6. P. 1322. https://doi.org/10.1134/S0036024424700328
- Горбачев Н.В., Горбачева Е.Ю., Соловьева Н.Д., Краснов В.В. // Электрохимическая энергетика. 2011. Т. 11. № 3. С. 154. https://doi.org/10.18500/1608-4039-2011-11-3-154-157
- Горбачев Н.В., Горбачева Е.Ю., Соловьева Н.Д. и др. // Вестн. Саратовского гос. техн. ун-та. 2011. № 4 (49). Вып. 1. С. 83.
- Горбачев Н.В. Технология формирования анодных слоев электродов резервных источников тока с хлорной кислотой. Дис. … канд. техн. наук. Саратов: ФГБОУ ВО “Саратовский государственный технический университет имени Гагарина Ю.А.”, 2011. 127 с.
- Справочник по электрохимии / Под ред. А.М. Сухотина. Л.: Химия, 1981. 488 с.
- Judd M., Brindley K. Soldering in electronics assembly. 2nd ed. Elsevier, 1999. 369 p. https://doi.org/10.1016/B978-0-7506-3545-5.X5000-6
- ГОСТ 9.305–84. Единая система защиты от коррозии и старения. Покрытия металлические и неметаллические неорганические. Операции технологических процессов получения покрытий: межгосударственный стандарт: издание официальное. Москва: ИПК Издательство стандартов, 2003. [GOST 9.305–84. Unified system of corrosion and ageing protection. Metal and non-metal inorganic coatings. Technological process operations for coating production: interstate standard: official publication (in Russian). Moscow, 2003.]
- ГОСТ 9.302–88. Единая система защиты от коррозии и старения. Покрытия металлические и неметаллические неорганические. Методы контроля: межгосударственный стандарт: издание официальное. Москва: ИПК Изд-во стандартов, 2001. [GOST 9.302–88. Unified system of corrosion and ageing protection. Metal and non-metal inorganic coatings. Control methods: interstate standard: official publication (in Russian). Moscow, 2001.]
- Pletcher D., Zhou H., Kear G. et al. // J. Power Sources. 2008. V. 180. № 1. P. 621. https://doi.org/10.1016/j.jpowsour.2008.02.024
- Leygraf C., Wallinder I.O., Tidblad J., Graedel T. The Atmospheric Corrosion Chemistry of Lead / Atmospheric Corrosion. 2nd Edition. Hoboken NJ, John Wiley & Sons. 2016. Appendix G.P. 316. https://doi.org/10.1002/9781118762134
- Graedel T.E. // J. Electrochem. Soc. 1994. V. 141. № 4. P. 922. https://doi.org/10.1149/1.2054858
- Holleman A.F., Wiberg E. Inorganic Chemistry. San Diego, London, etc., Academic Press. 2001. P. 916.
- Todd G., Parry E. // Nature. 1964. V. 202. № 4930. P. 386. https://doi.org/10.1038/202386a0
- Howie R.A., Moser W. // Nature. 1968. V. 219. № 5152. P. 372. https://doi.org/10.1038/219372a0
- Roberts A.C., Stirling J.A.R., Carpenter G.J.C. et al. // Mineral. Mag. 1995. V. 59. № 395. P. 305. https://doi.org/10.1180/minmag.1995.059.395.14
- Siidra O.I., Jonsson E., Chukanov N.V. et al. // Eur. J. Mineral. 2018. V. 30. № 2. P. 383. https://doi.org/10.1127/ejm/2018/0030-2723
- Olby J.K. // J. Inorg. Nucl. Chem. 1966. V. 28. № 11. P. 2507. https://doi.org/10.1016/0022-1902(66)80373-1
- Siidra O., Nekrasova D., Depmeier W. et al. // Acta Cryst. B. 2018. V. B74. № 2. P. 182. https://doi.org/10.1107/S2052520618000768
- Кащеев В.Д., Кабанов Б.Н., Лейкис Д.И. // Докл. АН СССР. 1962. Т. 147. № 1. С. 143.
- Кабанов Б.Н., Кащеев В.Д. // Докл. АН СССР. 1963. Т. 151. № 4. С. 883.
- Séby F., Potin-Gautier M., Giffaut E. et al. // Geochim. Cosmochim. Acta. 2001. V. 65. № 18. P. 3041. https://doi.org/10.1016/S0016-7037(01)00645-7
- Gajda T., Sipos P., Gamsjäger H. // Monatsh. Chem. 2009. V. 140. P. 1293. https://doi.org/10.1007/s00706-009-0188-5
- Gamsjäger H., Gajda T., Sangster J., Saxena S.K., Voigt W. Chemical Thermodynamics. V. 12: Chemical Thermodynamics of Tin / Ed.J. Perrone. Issy-les-Moulineaux, OECD Nuclear Energy Agency. 2012. 609 p.
- ГОСТ Р 58593–2019. Источники тока химические. Термины и определения: Национальный стандарт Российской Федерации: издание официальное. Москва: Стандартинформ, 2019. [GOST R58593–2019. Primary and secondary cells and batteries. Vocabulary: national standard of the Russian Federation: official publication (in Russian). Moscow, 2019.]
- Голембиовский В.С., Есиев Р.У., Колпащиков Ю.В. и др. Энергосодержащий источник тока, Патент RU2487313 (Россия). Заявл. 03.02.2012, опубл. 10.07.2013. [Golembiovskij V.S., Esiev R.U., Kolpashchikov Yu.V. et al. Energy-Containing Power Source, Patent RU2487313 (Russia), Applied 03.02.2012, published 10.07.2013]
- Набоков Ю.А., Корченков И.А., Трофимов П.В., Павленков А.Б., Самсонов Д.А., Щеглов П.А. Энергосодержащий источник тока, Патент RU2822542 (Россия). Заявл. 18.07.2023, опубл. 09.07.2024. [Nabokov Yu.A., Korchenkov I.A., Trofimov P.V., Pavlenkov A.B., Samsonov D.A., Shcheglov P.A. Energy-containing power source, Patent RU2822542 (Russia). Applied 18.07.2023, published 09.07.2024.]
Supplementary files
