Steady-state redox sorption of oxygen dissolved in water on granular layers of copper-ion-exchange nanocomposites
- Authors: Kravchenko T.A.1, Kozaderov O.A.1, Vakhnin D.D.1, Golovin I.A.1, Martynov A.E.1
-
Affiliations:
- Voronezh State University
- Issue: Vol 99, No 2 (2025)
- Pages: 286-296
- Section: ФИЗИЧЕСКАЯ ХИМИЯ НАНОКЛАСТЕРОВ, СУПРАМОЛЕКУЛЯРНЫХ СТРУКТУР И НАНОМАТЕРИАЛОВ
- Submitted: 19.05.2025
- Accepted: 19.05.2025
- Published: 20.05.2025
- URL: https://ogarev-online.ru/0044-4537/article/view/292483
- DOI: https://doi.org/10.31857/S0044453725020142
- EDN: https://elibrary.ru/DDFNXP
- ID: 292483
Cite item
Abstract
The process of redox sorption of oxygen dissolved in water on cathodically polarized granular layers of copper-ion-exchange nanocomposites depending on the water flow rate and the value of polarizing current is studied. It is observed that initially the amount of absorbed oxygen exceeds the amount of leaked electricity. With time, the chemical activity of the nanocomposite decreases, and oxygen continues to be sorbed and further recovered mainly due to the current component of the process. Simultaneous increase in the water flow rate and the strength of the limiting current is concluded to have a favorable effect on the rate of oxygen uptake. Maintaining the constancy of the water supply mode and the respective current strength ensures a stationary course of diffusion, chemical, and electrochemical stages. Successive stages of external diffusive oxygen transfer to the surface of nanocomposite grains, intra-diffusive oxygen transfer along the grain pores and chemical oxidation of copper nanoparticles to oxides characteristic of the final sources are found to be compensated by the stages of electroreduction of oxygen from surface adsorbed complexes and regeneration of oxidation products into metallic copper nanoparticles. The nanocomposite is a continuous source of newly reduced metal particles and contributes to the oxygen redox sorption process reaching the stationary mode. Unlike the nonpolarizable granular layer, the oxygen concentration remains at a low constant level under the conditions of the maximum admissible electric current applied.
About the authors
T. A. Kravchenko
Voronezh State University
Author for correspondence.
Email: krav280937@yandex.ru
Russian Federation, Voronezh
O. A. Kozaderov
Voronezh State University
Email: krav280937@yandex.ru
Russian Federation, Voronezh
D. D. Vakhnin
Voronezh State University
Email: krav280937@yandex.ru
Russian Federation, Voronezh
I. A. Golovin
Voronezh State University
Email: krav280937@yandex.ru
Russian Federation, Voronezh
A. E. Martynov
Voronezh State University
Email: krav280937@yandex.ru
Russian Federation, Voronezh
References
- Багоцкий В.С. Основы электрохимии. М.: Химия, 1988. 400 с. [Bagotsky V.S. Fundamentals of Electrochemistry M.: Chemistry, 1988. 400 р.]
- Дамаскин Б.Б., Петрий О.А., Цирлина Г.А. Электрохимия. М.: Химия, Колос, 2006. 672 с. [Damaskin B.B., Petri O.A., Cirlina G.A. Electrochemistry M.: Chemistry, Kolos, 2006. 672 р.]
- Vukmirovic M.B., Vasiljevic N., Dimitrov N. et al. // J. Electrochemical Society. 2003. Vol. 150. Р. 10.
- Lu Y., Xu H., Wang J. et al. // J. Electrochimica Acta. 2009. V. 54. Р. 3972.
- Богдановская В.А., Тарасевич М.Р., Кузнецова Л.Н. и др. // Электрохимия. 2010. Т. 46. № 8. С. 985. [Bogdanovskaya V.A., Tarasevich M.R., Kuznetsova L.N. et al. // Electrochemistry. 2010. Vol. 46. № 8. P. 985.]
- Yang Y., Zhou Y. // J. Electroanalytical Chemistry. 1995. V. 397. P. 271.
- Яштулов Н.А., Ревина А.А. // Кинетика и катализ. 2013. Т. 54. № 3. С. 336. [Yashtulov N.A., Revina A.A. // Kinetics and catalysis. 2013. V. 54. № 3. P. 336.]
- Nie Y., Li L., Wei Z. // J. Chemical Society Rewiews. 2013. № 3. P. 1.
- Курысь Я.И., Додон Е.С., Уставицкая Е.А. и др. // Электрохимия. 2012. Т. 48. № 11. С. 1161–1168. [Kurys Ya.I., Dodon E.S., Ustavitskaya E.A. et al. // Electrochemistry. 2012. Vol. 48. № 11. P. 1161.]
- Гуревич С.А., Ильющенков Д.С., Явсин Д.А. и др. // Там же. 2017. Т. 53. № 6. С. 642. [Gurevich S.A., Ilyushenkov D.S., Yavsin D.A. et al. // Electrochemistry. 2017. Vol. 53. № 6. P. 642.]
- Chen X., Zhu H., Zhao J. et al. // Angewandte Chemie Int. Ed. 2008. № 47. P. 5353.
- Yang W., Li J., Lan J. et al. // Int. J. of Hydrogen Energy XXX. 2018. P. 1.
- Wang N., Lu B., Li L. et al. // ACS Catalysis. 2018. № 8. P. 6827.
- Qin Y., Ou Z., Xu C. et al. // Nanoscale Res. Lett. 2021. P. 1.
- Liu Q., Peng Y., Li Q. et al. // ACS Appl. Mater. Interfaces. 2020. V. 12. P. 17641.
- Peera S., Kwon H., Lee T. et al. // Ionics. 2020. V. 26. P. 1563.
- Li Y., Nishidate K. // Int. J. of Hydrogen Energy. 2024. V. 51. P. 1471.
- Singh H., Zhuang S., Ingis B. et al. // Carbon. 2019. V. 151. P. 160.
- Yang Y., Qi W., Niu J. et al. // Int. J. of Hydrogen Energy XXX. 2020. V. 45. P. 15465.
- Zhu Y., Han C., Chen Z. // Int. J. of Hydrogen Energy. 2024. V. 60. P. 1359.
- Кузьмин А.В., Шаинян Б.А. // Успехи Химии. 2023. Т. 92. № 6. С. 1. [Kuzmin A.V., Shainyan B.A. // Russian Chemical Reviews. 2023. V. 92. № 6. P. 1.]
- Han C., Chen Z. // Applied Surface Science. 2020. V. 511. P. 1.
- Liang Z., Liu C., Chen M. et al. // New J. of Chemistry. 2019. V. 43. P. 19308.
- Ghandehari M.H., Andersen. T.N., Eyring H. // Corrosion Science. 1976. V. 16. P. 123.
- Крейзер И.В., Маршаков И.К., Тутукина М.Н., Зарцын И.Д. // Защита металлов. 2004. Т. 40. № 1. С. 28. [Kreizer I.V., Marshakov I.K., Tutukina M.N., Zartsyn I.D. // Protection of metals. 2004. V. 40. № 1. P. 28.]
- Маршаков И.К., Волкова Л.Е., Тутукина М.Н. и др. // Вестник ВГУ. 2005. № 2. С. 43. [Marshakov I.K., Volkova L.E., Tutukina M.N. et al. // Bulletin of the VSU. 2005. № 2. P. 43.]
- Nakajima Y., Abdul Latif M., Nagata T. et al. // J. Phys. Сhemistry. 2023. V. 18. № 24. P. 3570.
- Истомин С.Я., Лысков Н.В., Мазо Г.Н. и др. // Успехи Химии. 2021. Т. 90. № 6. С. 644. [Istomin S.Y., Lyskov N.V., Mazo G.N. et al. // Russian Chemical Reviews. 2021. V. 90. № 6. P. 644.]
- Кравченко Т.А., Золотухина Е.В., Чайка М.Ю., Ярославцев А.Б. // Электрохимия нанокомпозитов металл–ионообменник. М.: Наука, 2013. 365 с. [Kravchenko T.A., Zolotukhina E.V., Chaika M.Yu., Yaroslavtsev A.B. // Electrochemistry of Nanocomposites Metal–Ion Exchanger. M.: Science. 2013. 365 р.]
- Muraviev D.N., Ruiz P., Munoz M. et al. // Reactive & Functional Polymers. 2011. № 71. P. 916.
- Горшков В.С., Захаров П.Н., Полянский Л.Н. и др. // Сорбционные и хроматографические процессы. 2014. Т. 14. № 4. С. 601. [Gorshkov V.S., Zakharov P.N., Polyansky L.N. et al. // Sorption and Chromatographic Processes. 2014. Vol. 14. № 4. P. 601.]
- Du C., Gao X., Chen W. // Chinese J. of Catalysis. 2016. № 37. P. 1049.
- Hussain S., Erikson H., Kongi N. et al. // J. Electrochemical Society. 2017. № 164. P. 1014.
- Богдановская В.А., Тарасевич М.Р. // Электрохимия. 2011. Т. 47. № 4. С. 404. [Bogdanovskaya V.A., Tarasevich M.R. // Electrochemistry. 2011. V. 47. № 4. P. 404.]
- Shao M. // Catalysts. 2015. № 5. P. 2115.
- Lu Y., Thia L., Fisher A. et al. // Science China Materials. 2017. № 60. P. 1109.
- Strbac S., Srejic I., Rakocevic Z. // J. Electroanalytical Chemistry. 2017. № 789. P. 76.
- Гутерман А.В., Пахомова Е.Б. Гутерман Е.В. и др. // Неорганические материалы. 2009. Т. 45. № 7. С. 829. [Guterman A.V., Pakhomova E.B. Guterman E.V. et al. // Inorganic Materials. 2009. V. 45. № 7. P. 829.]
- Меньщиков В.С., Беленов С.В., Новомлинский И.Н. и др. // Электрохимия. 2021. Т. 57. № 6. C. 331. [Menshchikov V.S., Belenov S.V., Novomlinsky I.N. et al. // Electrochemistry. 2021. V. 57. № 6. P. 331.]
- Selvaraju T., Ramaraj R. // PRAMANA – Indian Academy of Sciences. 2005. V. 65. № 4. P. 713.
- Lebedeva V.I., Gryaznov V.I., Petrova I.V. et al. // Kinetics and catalysis. 2006. V. 47. № 6. P. 867.
- Barau A., Budarin V., Luque R. et al. // Catal Lett. 2008. № 124. P. 204.
- Волков В.В., Кравченко Т.А., Ролдугин В.И. // Российские Нанотехнологии. 2013. Т. 82. № 5. С. 465. [Volkov V.V., Kravchenko T.A., Roldugin V.I. // Russian Nanotechnologies. 2013. Vol. 82. № 5. P. 465.]
- Слепцова О.В., Соцкая Н.В., Кравченко Т.А. // Журн. физ. химии. 1997. Т. 71. № 10. С. 1899. [Sleptsova O.V., Sotskaya N.V., Kravchenko T.A. // J. Phys.Сhemistry. 1997. V. 71. № 10. P. 1899.]
- Кравченко Т.А., Соцкая Н.В., Слепцова О.В. // Там же. 2000. Т. 74. № 6. С. 1111. [Kravchenko T.A., Sotskaya N.V., Sleptsova O.V. // Ibid. 2000. V. 74. № 6. P. 1111.]
- Полянский Л.Н. // Сорбционные и хроматографические Процессы. 2014. Т. 14. № 5. С. 813. [Polyansky L.N. // Sorption and Сhromatographic Рrocesses. 2014. V. 14. № 5. P. 813.]
- Полянский Л.Н., Горшков В.С., Вахнин Д.Д. и др. // Российские нанотехнологии. 2015. Т. 10. № 7–8. С. 46. [Polyansky L.N., Gorshkov V.S., Vakhnin D.D. et al. // Russian Nanotechnologies. 2015. V. 10. № 7–8. P. 558.]
- Хорольская С.В., Полянский Л.Н., Кравченко Т.А. и др. // Журн. физ. химии. 2014. Т. 88. № 6. С. 1002. [Khorolskaya S.V., Polyansky L.N., Kravchenko T.A. et al. // J. Phys. Сhemistry. 2014. V. 88. № 6. P. 1000.]
- Полянский Л.Н., Коржов Е.Н., Вахнин Д.Д и др. // Журн. физ. химии. 2016. Т. 90. № 8. С. 1267. [Polyansky L.N., Korzhov E.N., Vakhnin D.D. et al. // J. Phys. Сhemistry. 2016. V. 90. № 8. P. 675.]
- Полянский Л.Н., Коржов Е.Н., Вахнин Д.Д. и др. // Журн. физ. химии. 2016. Т. 90. № 9. С. 1414. [Polyansky L.N., Korzhov E.N., Vakhnin D.D. et al. // J. Phys. Сhem. 2016. V. 90. № 9. P. 1889.]
- Вахнин Д.Д., Придорогина В.Е., Полянский Л.Н. и др. // Журн. физ. химии. 2018. Т. 92. № 1. С. 155. [Vakhnin D.D., Pridorogina V.E., Polyansky L.N. et al. // J. Phys. Сhem. 2018. V. 92. № 1. P. 172.]
- Вахнин Д.Д., Полянский Л.Н., Кравченко Т.А. и др. // Журн. физ. химии. 2019. Т. 93. № 5. С. 749. [Vakhnin D.D., Polyansky L.N., Kravchenko T.A. et al. // J. Phys. Сhem. 2019. Vol. 93. № 5. Р. 793.]
- Кравченко Т.А., Конев Д.В., Вахнин Д.Д. и др. // Российские Нанотехнологии. 2019. Т. 14. № 11–12. С. 15. [Kravchenko T.A., Konev D.V., Vakhnin D.D. et al. // Russian Nanotechnologies. 2019. V. 14. № 11–12. P. 15.]
- Кравченко Т.А., Вахнин Д.Д., Придорогина В.Е. и др. // Сорбционные и хроматографические процессы. 2020. Т. 20. № 4. С. 539. [Kravchenko T.A., Vakhnin D.D., Pridorogina V.E. et al. // Sorption and Chromatographic Processes. 2020. V. 20. № 4. Р. 539.]
- Кравченко Т.А., Шевцова Е.А., Крысанов В.А. // Сорбционные и хроматографические процессы. 2021. Т. 21. № 5. С. 630. [Kravchenko T.A., Shevtsova E.A., Krysanov V.A. // Sorption and Chromatographic Processes. 2021. V. 21. № 5. P. 630.]
- Вахнин Д.Д., Фертикова Т.Е. Полянский Л.Н. и др. // Российские нанотехнологии. 2022. Т. 17. № 6. С. 799. [Vakhnin D.D., Fertikova T.E., Polyansky L.N. et al. // Russian Nanotechnologies. 2022. V. 17. № 6. P. 766.]
- Кравченко Т.А., Крысанов В.А., Головин И.А. // Электрохимия. 2023. Т. 59. № 3. С. 134. [Kravchenko T.A., Krysanov V.A., Golovin I.A. // Electrochemistry. 2023. V. 59. № 3. P. 1729.]
- Кравченко Т.А., Фертикова Т.Е., Головин И.А. и др. // Журн. физ. химии. 2023. Т. 97. № 12. С. 1729. [Kravchenko T.A., Fertikova T.E., Golovin I.A. et al. // J. Physics Chemistry. 2023. V. 97. № 12. P. 2768.]
- Кравченко Т.А., Полянский Л.Н., Калиничев А.И., Конев Д.В. // Нанокомпозиты металл-ионообменник. М.: Наука, 2009. 391 с. [Kravchenko T.A., Polyansky L.N., Kalinichev A.I., Konev D.V. // Metal–Ion Exchanger Nanocomposites. M.: Science, 2009. 391 р.]
- Чайка М.Ю., Кравченко Т.А., Полянский Л.Н. и др. // Электрохимия. 2008. Т. 44. № 11. С. 1337. [Chaika M.Y., Kravchenko T.A., Polyansky L.N. et al. // Electrochemistry. 2008. V. 44. № 11. P. 857.]
- Полянский Л.Н., Горшков В.С., Кравченко Т.А. // Журн. физ. химии. 2012. Т. 86. № 1. С. 121. [Polyansky L.N., Gorshkov V.S., Kravchenko T.A. // J. Phys. Сhem. 2012. V. 86. № 1. P. 114.]
- Сергеева О.В., Рахманов C.K. Введение в нанохимию: пособие для студентов хим. фак. Минск. 2009. 178 с. [Sergeeva O.V., Rakhmanov S.K. Introduction to nanochemistry: The schoolbook for students. Minsk. 2009. 178 р.]
Supplementary files
