Physical and chemical properties and activity of Mn/γ-Al2O3 catalyst during propane to olefinic hydrocarbon conversion
- Authors: Vosmerikov A.A.1, Stepanov A.A.1, Vosmerikova L.N.1, Gerasimov E.Y.2, Vosmerikov A.V.1
-
Affiliations:
- Institute of Petroleum Chemistry of the Siberian Branch of the Russian Academy of Sciences
- Federal Research Center, G. K. Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences
- Issue: Vol 99, No 2 (2025)
- Pages: 251-261
- Section: ХИМИЧЕСКАЯ КИНЕТИКА И КАТАЛИЗ
- Submitted: 19.05.2025
- Accepted: 19.05.2025
- Published: 20.05.2025
- URL: https://ogarev-online.ru/0044-4537/article/view/292432
- DOI: https://doi.org/10.31857/S0044453725020102
- EDN: https://elibrary.ru/DDSZHM
- ID: 292432
Cite item
Abstract
The physicochemical and catalytic properties of manganese-modified γ-Al2O3 are described. Using the method of thermoprogrammed ammonia desorption, data on the acid characteristics of Mn-containing catalysts are obtained, and they are found to differ from each other by the distribution and ratio of acid centers of various types. The morphology and structure of particles of Mn/γ-Al2O3 catalysts are studied by high-resolution transmission electron microscopy, and modification of γ-Al2O3 with manganese is shown to change them in no significant way. It is found that the largest amount of olefinic hydrocarbons is formed in the process of propane conversion at 650°C on γ-Al2O3 containing 4.0% manganese and makes up 37.8% at conversion of 58% while the selectivity of formation of lower olefins reaches 64.2%. The amount and nature of coke deposits formed on the surface of Mn-containing catalysts during the propane dehydrogenation reaction are determined by the method of differential thermal analysis. It is shown that in the course of the reaction carbon nanofibers are formed near the catalyst surface and layers of graphite-like carbon on the surface of Al2O3 particles.
About the authors
A. A. Vosmerikov
Institute of Petroleum Chemistry of the Siberian Branch of the Russian Academy of Sciences
Author for correspondence.
Email: antonvosmerikov@gmail.com
Russian Federation, Tomsk, 634055
A. A. Stepanov
Institute of Petroleum Chemistry of the Siberian Branch of the Russian Academy of Sciences
Email: antonvosmerikov@gmail.com
Russian Federation, Tomsk, 634055
L. N. Vosmerikova
Institute of Petroleum Chemistry of the Siberian Branch of the Russian Academy of Sciences
Email: antonvosmerikov@gmail.com
Russian Federation, Tomsk, 634055
E. Y. Gerasimov
Federal Research Center, G. K. Boreskov Institute of Catalysis, Siberian Branch of the Russian Academy of Sciences
Email: antonvosmerikov@gmail.com
Russian Federation, Novosibirsk, 630090
A. V. Vosmerikov
Institute of Petroleum Chemistry of the Siberian Branch of the Russian Academy of Sciences
Email: antonvosmerikov@gmail.com
Russian Federation, Tomsk, 634055
References
- Левин В.О., Потехин В.М., Кудимова М.В. // Нефтепереработка и нефтехимия. Научно-технические достижения и передовой опыт. 2017. Т. 6. С. 28.
- Погосян Н.М., Погосян М.Д., Шаповалова О.В. и др. // Нефтегазохимия. 2016. Т. 2. С. 38.
- Волкова А.В. Рынок базовых продуктов нефтехимии: олефины и ароматические углеводороды. М.: Национальный исследовательский университет Высшая школа экономики, 2019. 70 с.
- Xieqing W., Chaogang X., Zaiting L., Genquan Z. // Practical Advances in Petroleum Processing. 2006. P. 1063.
- Yoshimura Y., Kijima N., Hayakawa T. et al. // Catal. Surv. Jpn. 2000. V. 4. P. 157.
- Akah A., Williams J., Ghrami M. // Catalysis Surveys from Asia. 2023. V. 4. P. 265.
- Fakhroleslam M., Sadrameli S.M. // Fuel. 2019. V. 252. P. 553.
- Жоров Ю.М. // Нефтехимия. 1984. Т. 24. № 1. С. 38.
- Мухина Т.Н., Барабанов Н.Л., Бабаш С.Е. Пиролиз углеводородного сырья. М.: Химия, 1987. 240 с.
- Черных С.П., Адельсон С.В., Мухина Т.Н. // Нефтехимия. 1991. Т. 31. С. 688.
- Chen S., Chang X., Sun G., Zhang T. et al. // Chem. Soc. Rev. 2021. V. 5. P. 3315.
- Liu S., Zhang B., Liu G. // Reaction Chemistry & Engineering. 2021. V. 6. № 1. P. 9.
- Sattler J.J., Ruiz-Martinez J., Santillan-Jimenez E., Weckhuysen B.M. // Chemical Reviews. 2014. V. 519. № 114. P. 10613.
- Бабак В.Н., Бабак Т.Б., Закиев С.Е., Холпанов Л.П. // Теорет. осн. хим. технологии. 2009. Т. 43. № 1. С. 78.
- Rodemerck U., Stoyanova M., Kondratenko E.V., Linke D. // J. Catal. 2017. V. 352. P. 256.
- Choi S.-W., Kim W.-G., So J.-S., Moore J.S. et al. // J. Catal. 2017. V. 345. P. 113.
- Chen C., Hu Z., Ren J., Zhang S. et al. // ChemCatChem. 2019. V. 11. P. 868.
- Estes D.P., Siddiqi G., Allouche F., Kovtunov K.V. et al. // J. Am. Chem. Soc. 2016. V. 138. P. 14987.
- Галанов С.И., Галанов А.И., Смирнов М.Ю., Сидорова О.И. и др. // Изв. Томского политех. ун-та. 2005. Т. 308. № 1. С. 126.
- Цырульников П.Г. // Росс. хим. журн. 2007. Т. 51. № 4. С. 133.
- Усачев Н.Я., Харламов В.В., Казаков А.В., Беланова Е.П. и др. // Сб. матер. Научно-экспертного совета при Председателе Совета Федерации Федерального Собрания Российской Федерации. 2010. С. 126.
- Delmastro A., Gozzelino G., Mazza D. et al. // J. of the Chemical Society. Faraday Transactions. 1992. V. 88. № 14. P. 2065.
- Kim S.-M., Lee Y.-J., Bae J.W. et al. // Applied Catalysis A: General. 2008. V. 348. № 1. P. 113.
- Morterra C., Magnacca G.A. // Catalysis Today. 1996. V. 27. № 3–4. P. 497.
Supplementary files
