Synthesis of complex alumina-cobalt systems using thermally activated gibbsite product
- Authors: Zhuzhgov A.V.1, Gorkusha A.S.1,2, Suprun E.A.1, Lysikov A.I.1,2, Isupova L.A.1
-
Affiliations:
- G. K. Boreskov Institute of Catalysis of the Siberian Branch of the Russian Academy of Sciences
- Novosibirsk State University
- Issue: Vol 99, No 1 (2025)
- Pages: 68-83
- Section: ХИМИЧЕСКАЯ КИНЕТИКА И КАТАЛИЗ
- Submitted: 17.04.2025
- Accepted: 17.04.2025
- Published: 17.04.2025
- URL: https://ogarev-online.ru/0044-4537/article/view/288115
- DOI: https://doi.org/10.31857/S0044453725010064
- EDN: https://elibrary.ru/EISJJA
- ID: 288115
Cite item
Abstract
Using the methods of X-ray phase, thermal, microscopic, adsorption, and chemical analyses, the possibility of obtaining high-percentage mixed alumina-cobalt spinels by hydrochemical treatment under room or hydrothermal conditions of powder suspensions of the product of centrifugal thermal activation of gibbsite in aqueous solutions of cobaltous nitrate is studied and shown. Thermal treatment of hydrochemical interaction products, viz. xerogels in the range of 350–850°C, is established to lead to the formation of Co3O4 and CoAl2O4 spinel phases with their different ratio depending on the synthesis conditions. Thus, hydrochemical treatment of suspensions at room temperature provides, after calcination, the predominant formation of the Co3O4 phase while hydrothermal treatment at 150°C leads to a deeper interaction of suspension components at the treatment stage, forming CoAl2O4 after thermal treatment. It is noted that the maximum content of spinel of CoAl2O4 type (90% according to H2-TPR data) is observed for the hydrothermal product calcined at 850°C. The considered method is concluded to allow obtaining complex alumina-cobalt compounds with different phase ratio, reducing the number of initial reagents, preparation stages, completely excluding effluents, as well as reducing the total amount of nitrates by 75 wt.%, as compared to the nitrate classical co-precipitation scheme.
Full Text

About the authors
A. V. Zhuzhgov
G. K. Boreskov Institute of Catalysis of the Siberian Branch of the Russian Academy of Sciences
Author for correspondence.
Email: zhuzhgov@catalysis.ru
Russian Federation, Novosibirsk
A. S. Gorkusha
G. K. Boreskov Institute of Catalysis of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
Email: zhuzhgov@catalysis.ru
Russian Federation, Novosibirsk; Novosibirsk
E. A. Suprun
G. K. Boreskov Institute of Catalysis of the Siberian Branch of the Russian Academy of Sciences
Email: zhuzhgov@catalysis.ru
Russian Federation, Novosibirsk
A. I. Lysikov
G. K. Boreskov Institute of Catalysis of the Siberian Branch of the Russian Academy of Sciences; Novosibirsk State University
Email: zhuzhgov@catalysis.ru
Russian Federation, Novosibirsk; Novosibirsk
L. A. Isupova
G. K. Boreskov Institute of Catalysis of the Siberian Branch of the Russian Academy of Sciences
Email: zhuzhgov@catalysis.ru
Russian Federation, Novosibirsk
References
- Li F., Duan X. // Struct. Bond. 2006. V. 119. P. 193.
- Tian Li., Huang K., Liu Y. et al. // J. Solid State. Chem. 2011. V. 184. P. 2961.
- Merikhi J., Jungk H., Feldmann C. // J. Mat. Chem. 2002. V. 10. P. 1311.
- Veronesi P., Leonelli C., Bondioli F. // Technologies. 2017. V. 5. P. 42.
- Rangappa D., Ohara S., Naka T. et al. // J. Mat. Chem. 2007. V. 17. P. 4426.
- Tang Y., Liu Y., Yu S. et al. // J. Power Sour. 2014. V. 256. P. 160.
- Khodakov A.Y., Chu W., Fongarland P. et al. // Chem. Rev. 2007. V. 107. P. 1692.
- Jacobs G., Das T.K., Zhang Y. et al. // App. Catal. A: General. 2002. V. 233. P. 263.
- Narayanan S., Unnikrishnan R. // J. Chemical Society, Faraday Transactions. 1998. V. 94. P. 1124.
- Gandia L.M., Montes M. // J. Molecular Catal. 1994. V. 94. P. 347.
- Ragupathi С., Vijaya J.D., Narayanan S. et al. // Ceram. Intern. 2015. V. 41. P. 2069.
- Choya A., Rivas B., Gutiérrez-Ortiz J.I. et al. // Materials. 2019. V. 19. P. 1.
- Moraz-Lazaro J.P., Blanco O., Rodriguez-Betancourtt V.M. et al. // Sensor and Actuators B: Chemical. 2016. V. 226. P. 518.
- Yang He., Goldbach A., Shen W. // Int. J. Hydrogen Energy. 2024. V. 51. P. 1360.
- Das T., Kweon S., Nah In. et al. // Cryogenics. 2015. V. 69. P. 36.
- Жужгов А.В., Криворучко О.П., Исупова Л.А. и др. // Катализ промышленности. 2017. Т. 17. № 5. С. 346.
- Буянов Р.А., Пармон В.Н. // Катализ в промышленности. 2017. Т. 17. № 5. С. 390.
- Жужгов А.В., Криворучко О.П., Исупова Л.А. // Журн. физ. химии. 2020. Т. 94. № 1. С. 50.
- Boeva O., Antonov A., Zhavoronkova K. // Catal. Comm. 2021. V. 148. P. 106173.
- Lu H.T., Li W., Miandoab E.S. et al. // Front. Chem. Sci. Eng. 2021. V. 15. P. 464.
- Aasadni M., Mehrpooya M., Ghorbani B. // J. Cleaner Production. 2021. V. 278. P. 123872.
- Wang C., Lui S., Lui L. et al. // J. Mater. Chem. Phys. 2006. V. 96. P. 361.
- Casado P.G., Rasines I. // J. Solid state Chem. 1984. V. 52. P. 187.
- Li W., Li J., Guo J. // J. Eur. Ceram. Soc. 2003. V. 23. P. 2289.
- Федотов M.A., Тарабан Е.А., Криворучко О.П. и др. // Журн. неорган. химии. 1990. Т. 35. № 5. С. 1226.
- Bai C.S., Soled S., Dwight K. // J. Solid State Chem. 1991. V. 91. P. 148.
- Fogg A.M., Williams G.R., Chester R. et al. // J. Mater. Chem. 2004. V. 14. P. 2369.
- Williams G.R., Moorhouse S.J., Timothy J.P. et al. // Dalton Trans. 2011. V. 40. P. 6012.
- Криворучко О.П., Буянов Р.А., Парамзин С.М. и др. // Кинетика и катализ. 1988. Т. 29. № 1. С. 252.
- Буянов Р.А., Криворучко О.П., Золотовский Б.П. // Изв. СО АН СССР. Сер. хим. наук. 1986. № 11. Вып. 4. С. 39.
- Ingram-Jones V.J., Davies R.C.T., Southern J.C. et al. // J. Mat. Chem. 1996. V. 6. P. 73.
- Танашев Ю.Ю., Мороз Э.М., Исупова Л.А. и др. // Кинетика и катализ. 2007. Т. 48. № 1. С. 161.
- Zhuzhgov A.V., Kruglyakov V.Y., Glazneva T.S. et al. // Chemistry. 2022. V. 4. P. 316.
- Жужгов А.В., Кругляков В.Ю., Супрун Е.А. и др. // Журн. прикл. химии. 2022. Т. 95. № 4. С. 450.
- Zhuzhgov A.V., Isupova L.A., Suprun E.A. et al. // Chem. Engineering. 2023. V. 7. № 4. 71:1–16.
- Ivanova Y., Zhuzhgov A., Isupova L. // Inorganic Chemistry Communications. 2024. V. 162. P. 1.
- Чукин Г.Д. Строение оксида алюминия и катализаторов гидрообессеривания. Механизмы реакций. М.: Типография Паладин, ООО “Принта”, 2010. 288 с.
- Косенко Н.Ф. // Изв. высших учебных заведений. 2011. Т. 54. № 5. С. 3.
- Krivoruchko O.P., Plyasova L.M., Zolotovskii B.P. et al. // React. Kinet. Catal. Lett. 1983. V. 22. № 3–5. P. 375.
- Van Nordstrand R.A., Hettinger W.P., Keith C.D. // Nature. 1956. V. 177. P. 713.
- Шефер К.И., Черепанова С.В., Мороз Э.М. и др. // Журн. структур. химии. 2010. Т. 51. № 1. С. 137.
- Danilevich V., Isupova L., Parmon V. // Cleaner Engineering and Technology. 2021. V. 3. P. 1.
- Исупова Л.А., Иванова Ю.А. // Докл. РАН. Химия, науки о материалах (Докл. Академии наук до 2019 года). 2023. Т. 511. С. 60.
- Lin H.K., Wang C.B., Chiu H.C. et al. // Catal. Lett. 2023. V. 86. P. 63.
Supplementary files
