Saturated vapor pressures and enthalpies of vaporization of malic acid esters
- Authors: Yamshchikova Y.F.1, Portnova S.V.1, Krasnykh E.L.1
-
Affiliations:
- Samara State Technical University
- Issue: Vol 99, No 1 (2025)
- Pages: 23-31
- Section: ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА И ТЕРМОХИМИЯ
- Submitted: 16.04.2025
- Accepted: 16.04.2025
- Published: 17.04.2025
- URL: https://ogarev-online.ru/0044-4537/article/view/287850
- DOI: https://doi.org/10.31857/S0044453725010026
- EDN: https://elibrary.ru/EIXTNJ
- ID: 287850
Cite item
Abstract
The saturated vapor pressures of malic acid diesters and linear С1-С5 alcohols are determined using the transpiration method in the temperature range of 303–369 K. The enthalpies of vaporization of esters at 298.2 K are determined on the basis of the obtained data. Correlations of the enthalpies of vaporization from Kovats indices and number of carbon atoms are obtained. The contributions of the hydroxyl group and intermolecular hydrogen bonds to are estimated. The author’s QSPR method for calculating the values of the enthalpies of vaporization of esters of hydroxy acids is modified.
Full Text

About the authors
Yu. F. Yamshchikova
Samara State Technical University
Email: kinterm@samgtu.ru
Russian Federation, Samara
S. V. Portnova
Samara State Technical University
Email: kinterm@samgtu.ru
Russian Federation, Samara
E. L. Krasnykh
Samara State Technical University
Author for correspondence.
Email: kinterm@samgtu.ru
Russian Federation, Samara
References
- Vinoth Kumar R., Pakshirajan K., Pugazhenthi G. Malic and Succinic Acid, in: Platf. Chem. Biorefinery, Elsevier, 2016. Р. 159. https://doi.org/10.1016/B978-0-12-802980-0.00009-2
- Martínez-Zepeda D.L., Meza-González B., Álvarez-Hernández M.L. et al. // Dyes Pigments. 2021. V. 188 P. 109239. https://doi.org/10.1016/j.dyepig.2021.109239
- Li Z.-J., Hong P.-H., Da Y.-Y. et al. // Metab. Eng. 2018. V. 48. Р. 25. https://doi.org/10.1016/j.ymben.2018.05.010
- Lee J.A., Ahn J.H., Lee S.Y. Organic Acids: Succinic and Malic Acids, in: Compr. Biotechnol., Elsevier, 2019. Р. 172. https://doi.org/10.1016/B978-0-444-64046-8.00159-2
- Kaminský J., Horáčková F., Biačková N. et al. // J. Phys. Chem. B. 2021. V. 125. Р. 11350. https://doi.org/10.1021/acs.jpcb.1c05480
- Kuz’mina N.S., Prokhorova A.A., Portnova S.V., Krasnykh E.L. // Polym. Sci. Ser. B. 2022. V. 64. Р. 636. https://doi.org/10.1134/S156009042270052X
- Li Y., Miao Y., Yang L. et al. // Chem. Eng. J. 2023. V. 455. P. 140572. https://doi.org/10.1016/j.cej.2022.140572
- Yang R., Wang B., Li M. et al. // Ind. Crops Prod. 2019. V. 136. Р. 121. https://doi.org/10.1016/j.indcrop.2019.04.073
- Ljubimova J.Y., Fujita M., Ljubimov A.V. et al. // Nanomed. 2008. V. 3. Р. 247. https://doi.org/10.2217/17435889.3.2.247
- Loyer P., Cammas-Marion S. // J. Drug Target. 2014. V. 22. Р. 556. https://doi.org/10.3109/1061186X.2014.936871
- Nguyen H.V.D., De Vries R., Stoyanov S.D. // ACS Sustainable Chem. Eng. 2020. V. 8. Р. 14166. https://doi.org/10.1021/acssuschemeng.0c04982
- Yan Y., An H., Liu Y. et al. // Int. J. Biol. Macromol. 2023. V. 242. P. 125056. https://doi.org/10.1016/j.ijbiomac.2023.125056
- Xi Y., Fan F., Zhang X. // Green Carbon. 2023. V. 1. Р. 118. https://doi.org/10.1016/j.greenca.2023.10.005
- Jiang Y., Ye X., Zheng T. et al. // Chin. J. Chem. Eng. 2021. V. 30. Р. 105. https://doi.org/10.1016/j.cjche.2020.10.017
- Werpy T., Petersen G. Top Value Added Chemicals from Biomass: Volume I – Results of Screening for Potential Candidates from Sugars and Synthesis Gas, 2004. 77 p. https://doi.org/10.2172/15008859
- Kövilein A., Kubisch C., Cai L., Ochsenreither K. // J. Chem. Technol. Biotechnol. 2020. V. 95. Р. 513. https://doi.org/10.1002/jctb.6269
- Liu J., Xie Z., Shin H. et al. // J. Biotechnol. 2017. V. 253. Р. 1. https://doi.org/10.1016/j.jbiotec.2017.05.011
- Dai Z., Zhou H., Zhang S. et al. // Bioresour. Technol. 2018. V. 258. Р. 345. https://doi.org/10.1016/j.biortech.2018.03.001
- Su C.-Y., Yu C.-C., Chien I.-L., Ward J.D. // Ind. Eng. Chem. Res. 2013. V. 52. Р. 11070. https://doi.org/10.1021/ie303192x
- Li Q.-Z., Jiang X.-L., Feng X.-J. et al. // J. Microbiol. Biotechnol. 2016. V. 26. Р. 1. https://doi.org/10.4014/jmb.1505.05049
- Stephenson R.M., Malanowski S. Handbook of the Thermodynamics of Organic Compounds, Springer Netherlands, Dordrecht, 1987. https://doi.org/10.1007/978-94-009-3173-2
- Emel’yanenko V.N., Yermalayeu A.V., Portnova S.V. et al. // J. Chem. Thermodyn. 2019. V. 128. Р. 55–67. https://doi.org/10.1016/j.jct.2018.07.029
- Portnova S.V., Yamshchikova Y.F., Krasnykh E.L. et al. // J. Chem. Eng. Data. 2020. V. 65. Р. 2566–2577. https://doi.org/10.1021/acs.jced.9b01195
- Portnova S.V., Yamshchikova Yu.F., Krasnykh E.L. // Russ. J. Phys. Chem. A. 2019. V. 93. Р. 577–583. https://doi.org/10.1134/S0036024419020213
- Krasnykh E.L., Portnova S.V. // J. Struct. Chem. 2017. V. 58. Р. 706. https://doi.org/10.1134/S0022476617040096
- Krasnykh E.L., Portnova S.V. // Ibid. 2016. V. 57. Р. 437. https://doi.org/10.1134/S0022476616030033
- Verevkin S.P., Sazonova A.Yu., Emel’yanenko V.N. et al. // J. Chem. Eng. Data. 2015. V. 60. Р. 89–103. https://doi.org/10.1021/je500784s
- Portnova S.V., Kuzmina N.S., Yamshchikova Y.F., Krasnykh E.L. // Ibid. 2022. V. 67. Р. 2323. https://doi.org/10.1021/acs.jced.2c00267
- Lipp S.V., Krasnykh E.L., Verevkin S.P. // J. Chem. Eng. Data. 2011. V. 56. Р. 800. https://doi.org/10.1021/je100231g
- Portnova S.V., Krasnykh E.L., Levanova S.V. // Russ. J. Phys. Chem. A. 2016. V. 90. Р. 990. https://doi.org/10.1134/S0036024416050253
- Verevkin S.P., Kozlova S.A., Emel’yanenko V.N. et al. // J. Chem. Eng. Data. 2006. V. 51. Р. 1896. https://doi.org/10.1021/je0602418
- Verevkin S.P. // J. Chem. Eng. Data. 2017. V. 52. Р. 301. https://doi.org/10.1021/je060419q
- Roganov G.N., Pisarev P.N., Emel’yanenko V.N., Verevkin S.P. // J. Chem. Eng. Data. 2005. V. 50. Р. 1114. https://doi.org/10.1021/je049561m
- Linstrom P. // NIST Standard Reference Database 1997. V. 69. https://doi.org/10.18434/T4D303
Supplementary files
