Физикохимия процессов сольватации/ассоциации в системе водорослевая целлюлоза/наноцеллюлоза–ДМАА/LICL

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

В данной работе проведено реологическое исследование процесса сольватации водорослевой целлюлозы и наноцеллюлозы в среде диметилацетамида с добавкой хлорида лития как одного из приоритетных прямых растворителей. Установлено, что водорослевая целлюлоза в растворе способна образовывать пространственные структуры – катионные комплексы с диметилацетамидом, стабилизированные анионами хлора. Энергия активации данного процесса составляет 29.4–42.8 кДж/моль. Зависимости вязкости от концентрации указывают на наличие ассоциационных взаимодействий, наиболее интенсивно проявляющихся при концентрации целлюлозы/наноцеллюлозы в растворе >1.5%. Методом ротационной вискозиметрии определено, что растворы водорослевой целлюлозы/наноцеллюлозы с концентрацией 2.0% обладают псевдопластичными свойствами. Реология полученных растворов делает их перспективным исходным сырьем для создания нетканых материалов, гидро/аэрогелей биомедицинского назначения.

Full Text

Restricted Access

About the authors

К. Г. Боголицын

Северный (Арктический) федеральный университет им. М. В. Ломоносова; Федеральный исследовательский центр комплексного изучения Арктики им. Н. П. Лаверова УрО РАН

Author for correspondence.
Email: k.bogolitsin@narfu.ru
Russian Federation, Архангельск; Архангельск

A. Э. Паршина

Северный (Арктический) федеральный университет им. М. В. Ломоносова

Email: k.bogolitsin@narfu.ru
Russian Federation, Архангельск

Д. A. Поломарчук

Северный (Арктический) федеральный университет им. М. В. Ломоносова

Email: k.bogolitsin@narfu.ru
Russian Federation, Архангельск

References

  1. Siddhanta A.K.., Prasad, K., Meena, R. et al. // Bioresour. Technol. 2009. V. 100. № 24. P. 6669. https://doi.org/10.1016/j.biortech.2009.07.047.
  2. Siddhanta A.K., Chhatbar M.U., Mehta G.K., et al. // J. Appl. Phycol. 2011. V. 23. № 5. P. 919. https://doi.org/10.1007/s10811-010-9599-2.
  3. Koyama M., Sugiyama J., Itoh T. // Cellulose. 1997. V. 4. № 2. P. 147. https://doi.org/10.1023/A:1018427604670.
  4. Chen Y.W., Lee H.V., Juan J.C., Phang S.-M. // Carbohydr. Polym. 2016. V. 151. P. 1210. https://doi.org/10.1016/j.carbpol.2016.06.083.
  5. Mihranyan A. // J. Appl. Polym. Sci. 2011. V. 119, № 4. P. 2499. https://doi.org/10.1002/app.32959.
  6. Halib N, Perrone F., M. Čemažar M., et al. // Materials (Basel). 2017. V. 10. № 8. P. 1. https://doi.org/10.3390/ma10080977.
  7. Zanchetta E., Damergi E., Patel B., et al. // Algal Res. 2021. V. 56. P. 102288. https://doi.org/10.1016/j.algal.2021.102288.
  8. The Physiology of Microalgae / Ed. Borowitzka M.A., Beardall J., Raven J.A. Cham: Springer International Publishing, 2016. P. 47.
  9. Li S, Bashline L., Lei L., et al. // Arab. B. 2014. V. 12. article e0169. https://doi.org/10.1199/tab.0169.
  10. McNamara J.T., Morgan J.L.W., Zimmer J. // Annu. Rev. Biochem. 2015. V. 84. P. 895. https://doi.org/10.1146/annurev-biochem-060614-033930.
  11. Gardner K.H., Blackwell J. // Biopolymers. 1974. V. 13, № 10. P. 1975. https://doi.org/10.1002/bip.1974.360131005.
  12. Tsekos I. // J. Phycol. 1999. V. 35. № 4. P. 635. https://doi.org/10.1046/j.1529-8817.1999.3540635.x.
  13. Roberts A.W., Roberts E.M., Delmer D.P. // Eukaryot. Cell. 2002. V. 1. № 6. P. 847. https://doi.org/10.1128/EC.1.6.847-855.2002.
  14. Chan W.S., Kwok A.C.M., Wong J.T.Y. // Front. Microbiol. 2019. V. 10. P. 1. https://doi.org/10.3389/fmicb.2019.00546.
  15. Roberts A.W., Roberts E. Cellulose: Molecular and Structural Biology. Springer, 2007. P. 17.
  16. Алешина Л.А. и др. Структура и физико-химические свойства целлюлоз и нанокомпозитов на их основе. Петрозаводск: Изд-во ПетрГУ, 2014. 240 с.
  17. Bogolitsyn K.G., Ovchinnikov D.V., Kaplitsin P.A. et al. // Chem. Nat. Compd. 2017. V. 53. № 3. P. 533. https://doi.org/10.1007/s10600-017-2039-7.
  18. Henniges U., Kostic M., Borgards A. et al. // Biomacromolecules. 2011. V. 12. № 4. P. 871. https://doi.org/10.1021/bm101555q.
  19. Азаров В.И., Буров А.В., Оболенская А.В. Химия древесины и синтетических полимеров. Санкт-Петербург: СПбЛТА, 1999. 628 с.
  20. Терентьева Э.П., Удовенко Н.К., Павлова Е.А. Химия древесины, целлюлозы и синтетических полимеров. Санкт-Петербург: СПбГТУРП, 2014. 53 с.
  21. Henniges U., Schiehser S., Rosenau T., Potthast A.// ACS Symp. Ser. 2010. V. 1033. P. 165. https://doi.org/10.1021/bk-2010-1033.ch009.
  22. Hasani M., Henniges U., Idström A. et al. // Carbohydr. Polym. 2013. V. 98, № 2. P. 1565. https://doi.org/10.1016/j.carbpol.2013.07.001.
  23. Aulin C., Ahola S., Josefsson P., et al. // Langmuir. 2009. V. 25. № 13. P. 7675. https://doi.org/10.1021/la900323n.
  24. Gindl W., Emsenhuber G., Maier G., Keckes J. // Biomacromolecules. 2009. V. 10. № 5. P. 1315. https://doi.org/10.1021/bm801508e.
  25. Hassan M.L., Moorefield C.N., Kishore Kotta, Newkome G.R.// Polymer. 2005. V. 46. № 21. P. 8947. https://doi.org/10.1016/j.polymer.2005.06.028.
  26. Ramos L.A., Morgado D.L., El Seoud O.A., et al. // Cellulose. 2011. V. 18. № 2. P. 385. https://doi.org/10.1007/s10570-011-9496-0.
  27. Rao C.P., Balaram P., Rao C.N.P. // J. Chem. Soc. Trans. 1980. V. 76. P. 1008.
  28. Waghorne W.E., Ward A.J. I., Clune T.G., Cox B.G. // J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases. 1980. V. 76. P. 1131. https://doi.org/10.1039/f19807601131.
  29. Bello J., Haas D., Bello H.R. // Biochemistry. 1966. V. 5. № 8. P. 2539. https://doi.org/10.1021/bi00872a008.
  30. Balasubramanian D., Shaikh R. // Biopolymers. 1973. V. 12. № 7. P. 1639. https://doi.org/10.1002/bip.1973.360120715.
  31. Zhang C., Liu R., Xiang J. et al. // J. Phys. Chem. B. 2014. V. 118. № 31. P. 9507. https://doi.org/10.1021/jp506013c.
  32. McCormick C.L., Callais P.A., Hutchinson B.H. // Macromolecules. 1985. V. 18. № 12. P. 2394. https://doi.org/10.1021/ma00154a010.
  33. Morgenstern B., Kammer H.W., Berger B., et al. // Acta Polym. 1992. V. 43. № 6. P. 356. https://doi.org/10.1002/actp.1992.010430612.
  34. Yadav S., Shire S.J., Kalonia D.S. // J. Pharm. Sci. 2010. V. 99.№ 12. P. 4812. https://doi.org/10.1002/jps.
  35. Тагер А.А. Физико-химия полимеров. 4e изд. М.: Научный мир, 2007. 576 с.
  36. El Hamdaoui L., El Bouchti M., El Moussaouiti M. // Polym. Bull. 2018. V. 75. № 2. P. 769. https://doi.org/10.1007/s00289-017-2066-3.
  37. Тагер А.А. Физико-химия полимеров. М.: Химия, 1968. 536 с.
  38. Шрамм Г. Основы практической реологии и реометрии. Пер. с англ. М.: Колосс, 2003. 312 с.
  39. Уилкинсон У.Л. Неньютоновские жидкости. Гидромеханика, перемешивание и теплообмен. М.: Мир, 1964. 216 с.
  40. Астарита Д. Основы гидромеханики неньютоновских жидкостей. М.: Мир, 1978. 309 с.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Scheme for obtaining algal cellulose and nanocellulose.

Download (138KB)
3. Fig. 2. The mechanism of cellulose dissolution in DMAA/LiCl proposed by a) McCormick et al. [32]N-dimethylacetamide (DMAc, b) Morgenstern et al. [33].

Download (104KB)
4. Fig. 3. Logarithmic dependence of the dynamic viscosity of solutions of algal cellulose (AC, left) and nanocellulose (VNC, right) on the reciprocal temperature.

Download (136KB)
5. Fig. 4. Flow curves of algal cellulose solutions.

Download (95KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».