Термодинамическое исследование полибромидных комплексов теллура

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Давление насыщенного и ненасыщенного пара Br2 над твердыми полибромтеллуратами состава (cation)2{[TeBr6](Br2)} (cation = Me4N+, Et4N+) измерено методом статической тензиметрии с мембранными нуль-манометрами в широком интервале температур. Из экспериментальных данных определена термическая стабильность этих соединений (Tразл), доказана физико-химическая модель парообразования, рассчитаны термодинамические характеристики процесса испарения брома, связывающего фрагменты анионов полибромтеллуратов (∆прT, ∆прT, lnp = f(T)), а также оценены энергии связи октаэдров [TeBr6] с Br2 (∆свG°T). Проведено сравнение полученных результатов с изученными ранее полибромидными комплексами висмута.

Full Text

Restricted Access

About the authors

Л. Н. Зеленина

Институт неорганической химии им. А.В. Николаева Сибирского отделения РАН; Новосибирский государственный университет

Author for correspondence.
Email: zelenina@niic.nsc.ru
Russian Federation, Новосибирск; Новосибирск

Т. П. Чусова

Институт неорганической химии им. А.В. Николаева Сибирского отделения РАН

Email: zelenina@niic.nsc.ru
Russian Federation, Новосибирск

Н. А. Коробейников

Институт неорганической химии им. А.В. Николаева Сибирского отделения РАН

Email: zelenina@niic.nsc.ru
Russian Federation, Новосибирск

А. Н. Усольцев

Институт неорганической химии им. А.В. Николаева Сибирского отделения РАН

Email: zelenina@niic.nsc.ru
Russian Federation, Новосибирск

References

  1. Pelletier, J., Caventou J. // Ann Chim Phys. 1819. V. 10. P. 142.
  2. Svensson P.H., Kloo L. // Chem. Rev. 2003. V. 103. No 5. P. 1649. https://doi.org/10.1021/cr0204101.
  3. Sonnenberg K., Mann L., Redeker F.A. et al. // Angew. Chemie — Int. Ed. 2020. V. 59. No 14. P. 5464. https://doi.org/10.1002/anie.201903197.
  4. Desiraju G.R., Shing Ho P., Kloo L. et al. // Pure Appl. Chem. 2013. V. 85. No 8. P. 1711. https://doi.org/10.1351/PAC-REC-12-05-10.
  5. Cavallo G., Metrangolo P., Milani R. et al. // Chem. Rev. 2016. V. 116. No 4. P. 2478. https://doi.org/10.1021/acs.chemrev.5b00484.
  6. Korobeynikov N.A., Usoltsev A.N., Abramov P.A. et al. // Inorganics. 2023. V. 11. № 1. P. 25. https://doi.org/10.3390/inorganics11010025.
  7. Keil H., Sonnenberg K., Müller C. et al. // Angew. Chemie Int. Ed. 2021. V. 60. No 5. P. 2569. https://doi.org/10.1002/anie.202013727.
  8. Brückner R., Haller H., Steinhauer S. et al. // Ibid. 2015. V. 54. No 51. P. 15579. https://doi.org/10.1002/anie.201507948.
  9. Sonnenberg K., Pröhm P., Schwarze N. et al. // Ibid. 2018. V. 57. No 29. P. 9136. https://doi.org/10.1002/anie.201803486.
  10. Voßnacker P., Wüst A., Müller C. et al. // Ibid. 2022. V. 61. No 43. e202209684. https://doi.org/10.1002/anie.202209684.
  11. Korobeynikov N.A., Usoltsev A.N., Kolesov B.A. et al. // CrystEngComm. 2022. V. 24. No 17. P. 3150. https://doi.org/10.1039/D2CE00210H.
  12. Shestimerova T.A., Yelavik N.A., Mironov A.V. et al. // Inorg. Chem. 2018. V. 57. No 7. P. 4077. https://doi.org/10.1021/acs.inorgchem.8b00265.
  13. Shestimerova T.A., Mironov A.V., Bykov M.A. et al. // Molecules. 2020. V. 25. No 12. P. 2765. https://doi.org/10.3390/molecules25122765.
  14. Bykov A.V., Shestimerova T.A., Bykov M.A. et al. // Int. J. Mol. Sci. 2023. V. 24. No 3. P. 2201. https://doi.org/10.3390/ijms24032201.
  15. Shestimerova T.A., Bykov M.A., Grigorieva A.V. et al. // Mendeleev Commun. 2022. V. 32. No 2. P. 194. https://doi.org/10.1016/j.mencom.2022.03.014.
  16. Shestimerova T.A., Golubev N.A., Bykov M.A. et al. // Molecules. 2021. V. 26. No 18. P. 5712. https://doi.org/10.3390/molecules26185712.
  17. Küttinger M., Loichet Torres P.A., Meyer E. et al. // Chem. — A Eur. J. 2022. V. 28. No 13. e202103491. https://doi.org/10.1002/chem.202103491.
  18. Küttinger M., Riasse R., Wlodarczyk J. et al. // J. Power Sources. 2022. V. 520. P. 230804. https://doi.org/10.1016/j.jpowsour.2021.230804.
  19. Wu W., Luo J., Wang F. et al. // ACS Energy Lett. 2021. V. 6. P. 2891. https://doi.org/10.1021/acsenergylett.1c01146.
  20. Usoltsev A.N., Adonin S.A., Novikov A.S. et al. // CrystEngComm. 2017. V. 19. No 39. P. 5934. https://doi.org/10.1039/C7CE01487B.
  21. Usoltsev A.N., Adonin S.A., Abramov P.A. et al. // Eur. J. Inorg. Chem. 2018. V. 2018. No 27. P. 3264. https://doi.org/10.1002/ejic.150+273201800383.
  22. Zelenina L.N., Chusova T.P., Isakov A.V. et al. // J. Chem. Thermodyn. Elsevier Ltd, 2020. V. 141. P. 105958. https://doi.org/10.1016/j.jct.2019.105958.
  23. Суворов А.В. Термодинамическая химия парообразного состояния. Л.: «Химия», 1970. С. 46.
  24. Zelenina L.N., Chusova T.P., Vasilieva I.G. // JCT. 2013. V. 57. P. 101. http://dx.doi.org/10.1016/j.jct.2012.08.005.
  25. Зеленина Л.Н., Чусова Т.П., Сапченко С.А. и др. // ЖНХ. 2023. Т. 68. № 2. С. 174 (Zelenina L.N., Chusova T.P., Sapchenko S.A, Gelfond N.V. // Russian Journal of Inorganic Chemistry. 2023. V. 68. Р. 140) doi: 10.31857/S0044457X22601274.
  26. Титов В.А., Коковин Г.А. / Математические методы в химической термодинамике. Новосибирск: «Наука», 1980. С. 98.
  27. Гурвич Л.В. ИВТАНТЕРМО — автоматизированная система данных о термодинамических свойствах веществ // Вест. АН СССР. 1983. 3. С. 54. (L.V. Gurvich. IVTANTHERMO — Automated data system on thermodynamic properties of substances. Moscow: Nauka, 1983 (in Russian)).

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Anionic part of complexes I and II [21]. Tellurium atoms are maroon, bromine atoms are olive.

Download (202KB)
3. Fig. 2. Dependences of Br2 vapour pressure on temperature in lgp-1000/T coordinates for complexes I (a) and II (b). The icons represent experimental points, the straight lines are drawn along the points of saturated and unsaturated vapour, the solid arrows indicate the points measured on cooling of the manometer.

Download (176KB)
4. Fig. 3. Percentage bromine content (from initial in the suspension (mBr2)) in the gas phase over complexes I and II as a function of temperature. Down arrows indicate points measured on the cooling gauge, up arrows indicate decomposition temperatures of the complexes.

Download (111KB)
5. Fig. 4. Deviations of experimental pressures (pe) from those calculated by equations from Table 3 (pc).

Download (80KB)
6. Fig. 5. Temperature dependence of the saturated vapour pressure of bromine over complexes I and II studied in this work, over polybromide complexes of bismuth [22] and liquid bromine [27].

Download (95KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».