The Role of Radicals in the Conversion of Trifluoromethane in the Flame of Methane–Oxygen Mixtures
- Authors: Kopylov S.N.1,2, Kopylov P.S.3, Eltyshev I.P.3, Begishev I.R.3
-
Affiliations:
- All-Russian Research Institute for Fire Protection
- National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
- State Fire Protection Service Academy
- Issue: Vol 97, No 11 (2023)
- Pages: 1674-1680
- Section: ФИЗИЧЕСКАЯ ХИМИЯ ПРОЦЕССОВ ГОРЕНИЯ И ВЗРЫВА
- Submitted: 26.12.2023
- Published: 01.11.2023
- URL: https://ogarev-online.ru/0044-4537/article/view/233083
- DOI: https://doi.org/10.31857/S004445372311016X
- EDN: https://elibrary.ru/DNLBCS
- ID: 233083
Cite item
Abstract
The mechanism of CF3H transformation in the flame of methane–oxygen mixtures of various compositions was calculated from the available experimental data on the concentrations of intermediates, taking into account only those elementary reactions whose kinetic parameters are known. In the flame of a CH4/O2 mixture, CF3H is destroyed in reactions with H, O, and OH without being regenerated, which disproves the classical (and still existing) ideas about the molecular mechanism of the transformation of initial reagents in the flame. In a rich mixture, the transformation mainly proceeds due to the reactions of CF3H, CF3, СF2, and COF2 with atomic hydrogen, competing with the stage of branching of the reaction chains that inhibit the combustion of methane in oxygen. In a stoichiometric and especially in a lean mixture, the role of oxidative processes involving O and OH increases, and the inhibition effect weakens. The resulting scheme qualitatively describes the entire known experimental picture observed during the combustion of CH4/O2/CF3H mixtures.
About the authors
S. N. Kopylov
All-Russian Research Institute for Fire Protection; National Research Nuclear University MEPhI (Moscow Engineering Physics Institute)
Email: firetest@mail.ru
143903, Balashikha, Russia; 115409, Moscow, Russia
P. S. Kopylov
State Fire Protection Service Academy
Email: firetest@mail.ru
129366, Moscow, Russia
I. P. Eltyshev
State Fire Protection Service Academy
Email: firetest@mail.ru
129366, Moscow, Russia
I. R. Begishev
State Fire Protection Service Academy
Author for correspondence.
Email: firetest@mail.ru
129366, Moscow, Russia
References
- ISO 14520-1: 2000 Gaseous fire-extinguishing systems – Physical properties and system design
- Максимов Б.Н., Барабанов В.Г., Серушкин И.Л. и др. Промышленные фторорганические продукты. СПб.: Химия, 1996. 544 с.
- The Kigali Amendment (2016): The amendment to the Montreal Protocol agreed by the Twenty-Eighth Meeting of the Parties (Kigali, 10-15 October 2016) http://ozone.unep.org/montreal-protocol-substances-deplete-ozone-layer/81853/2197
- Shebeko Yu.N., Azatyan V.V., Kopylov S.N. et al. // Combustion and Flame. 2000. V. 121. P. 542.
- Kopylov S.N., Nikonova E.V., Dorofeeva S.M., Bychkov V.D. Proceedings of the 6th International Seminar on Flame Structure – Brussels: Free University of Brussels, 2008. 11 p.
- Luo C., Dlugogorski B.Z., Kennedy E.M. Proceedings of the 7th HOTWC. 2004. NIST special pub. 984-2.
- Noto T., Babushok V., Hamins A., Tsang W. // Combustion and Flame. 1998. V. 112. P. 147.
- Williams B.A., L’Esperance D.M., Fleming J.W. // Ibid. 2000. V. 120. P. 160.
- Roessler J.F. Proc. Combust. Inst. 1998. V. 27. P. 287.
- Musick M., Van Tiggelen P.J. // Bull. Soc. Chim. Belg. 1996. V. 105. P. 555.
- Matsugi A., Shiina H. // Bull. Chem. Soc. Jpn. 2014. V. 87. P. 890.
- Herron J.T. J. // Phys. Chem. Ref. Data. 1988. V. 17. P. 967.
- Srivason N.K., et al. // J. Phys. Chem. 2007. V. A111. P. 6822.
- Гардинер У. Химия горения. М.: Мир, 1988. 464 с.
- Кондратьев В.Н. Константы скорости газофазных реакций. М.: Наука, 1970.
- Takahashi K. et al. // J. Phys. Chem. 1998. V. A102. P. 8339.
- Marshall P. et al. Proceedings of the 7th HOTWC. 2004. NIST sp. pub. 984-2. P. 262.
- Tsai C., Fadden D.L. // J. Phys. Chem. 1989. V. 93. P. 2471.
- Yu H. et al. // Environ. Sci. Technol. 2005. V. 39. P. 3020.
- Yamamori Y., Takashi K., Inomata T. // J. Phys. Chem. 1999. V. A103. P. 8803.
- Richter H., Vandooren J., Van Tiggelen P.J. // J. Phys. Chem. 1994. V. 91. P. 1748.
- Burgess D.R.F. et al. Thermochemical and Chemical Kinetic Data for Fluorinated Hydrocarbons. NIST Technical Note 1412. 1995.
- Garrett B.C., Truhlar D.G. // J. Am. Chem. Soc. 1979. V. 101. P. 5207.
- Richter H., Vandooren J., Van Tiggelen P.J. Symp. Int. Combust. Proc. 1994. V. 25. P. 825.
- Knyazev V.D., Bencsura A., Slage I.R. // J. Phys. Chem. 1997. V. A101. P. 849.
- Копылов С.Н. Дис. … докт. техн. наук. М.: ВНИИПО, 2001.
- Ryan K.R., Plumb I.C. // Plasma Chem. Plasma Process. 1984. V. 4. P. 271.
- Франк-Каменецкий Д.А. Диффузия и теплопередача в химической кинетике. М.: Наука, 1987. 491 с.
- Франк-Каменецкий Д.А. Основы макрокинетики, диффузия, теплопередача в химической кинетике. Долгопрудный: “Интеллект”, 2008. 407 с.
- Льюис Б., Эльбе Г. Горение, пламя и взрывы в газах. М.: Мир, 1968. 592 с.
Supplementary files
