Thermochemical Characteristics of 2,6-Di-tert-butyl-para-benzoquinone

Cover Page

Cite item

Full Text

Abstract

The combustion energy of crystalline 2,6-di-tert-butyl-para-benzoquinone was determined by static-bomb combustion calorimetry at T = 298.15 K. The standard molar enthalpies of combustion and formation of the compound were calculated using the experimental values of combustion energies. The obtained thermochemical characteristics of 2,6-di-tert-butyl-para-benzoquinone were compared with the literature data for previously studied benzoquinone derivatives.

About the authors

P. E. Goryunova

Lobachevsky State University

Email: markin@chem.unn.ru
603022, Nizhny Novgorod, Russia

K. I. Pashanova

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences

Email: markin@chem.unn.ru
603950, Nizhny Novgorod, Russia

G. A. Novichkov

Lobachevsky State University

Email: markin@chem.unn.ru
603022, Nizhny Novgorod, Russia

N. N. Smirnova

Lobachevsky State University

Email: markin@chem.unn.ru
603022, Nizhny Novgorod, Russia

A. V. Piskunov

Razuvaev Institute of Organometallic Chemistry, Russian Academy of Sciences

Email: markin@chem.unn.ru
603950, Nizhny Novgorod, Russia

A. V. Markin

Lobachevsky State University

Author for correspondence.
Email: markin@chem.unn.ru
603022, Nizhny Novgorod, Russia

References

  1. Pereyra C.E., Dantas R.F., Ferreira S.B. et al. // Cancer Cell Int. 2019. V. 19. P. 1. https://doi.org/10.1186/s12935-019-0925-8
  2. Campora M., Francesconi V., Schenone S. et al. // Pharmaceuticals. 2021. V. 14. P. 1. https://doi.org/10.3390/ph14010033
  3. Bakasso S., Lamien-Meda A., Lamien C.E. et al. // Pak. J. Biol. Sci. 2008. V. 11. P. 1429–1435. https://doi.org/10.3923/pjbs.2008.1429.1435
  4. Ma Q., Wei R., Sang Z. // Nat. Prod. Commun. 2020. V. 15. P. 1. https://doi.org/10.1177/1934578X20902898
  5. Bringmann G., Mutanyatta-Comar J., Knauer M. et al. // Nat. Prod. Rep. 2008. V. 25. P. 696. https://doi.org/10.1039/B803784C
  6. Jali B.R. // Biointerface Res. Appl. Chem. 2021. V. 11. P. 11679. https://doi.org/10.33263/BRIAC114.1167911699
  7. Balachandran C., Al-Dhabi N.A., Duraipandiyan V. et al. // Biotechnol. Lett. 2021. V. 43. P. 1005. https://doi.org/10.1007/s10529-021-03089-y
  8. El-Najjar N., Gali-Muhtasib H., Ketola R.A. et al. // Phytochem. Rev. 2011. V. 10. P. 353. https://doi.org/10.1007/s11101-011-9209-1
  9. Khan A., Tania M., Fu S. et al.// Oncotarget. 2017. V. 8. P. 51907. https://doi.org/10.18632/oncotarget.17206
  10. Ballout F., Habli Z., Rahal O.N. et al // Drug Discov. Today. 2018. V. 23. P. 1089–1098. https://doi.org/10.1016/j.drudis.2018.01.043
  11. Ahmad A., Mishra R.K., Vyawahare A., et al. // Saudi Pharm. J. 2019. V. 27. P. 1113–1126. https://doi.org/10.1016/j.jsps.2019.09.008
  12. Sahoo P.M.S., Behera S., Behura R. et al. // Biointerface Research in Appl. Chem. 2022. V. 12. P. 3247. https://doi.org/10.33263/BRIAC123.32473258
  13. Kelso G.F., Porteous C.M., Coulter C.V. et al. // J. Biol. Chem. 2001. V. 276. P. 4588. https://doi.org/10.1074/jbc.M009093200
  14. Xiong R., Siegel D., Ross D. // Toxicol. Appl. Pharmacol. 2014. V. 280. P. 285. https://doi.org/10.1007/s12640-018-9953-8
  15. Olson K.R., Clear K.J., Derry P.J. et al. // Free Radic. Biol. Med. 2022. V. 182. P. 119. https://doi.org/10.1016/j.freeradbiomed.2022.02.018
  16. Chatron N., Hammed A., Benoit E. et al. // Nutrients. 2019. V. 11. P. 1. https://doi.org/10.3390/nu11010067
  17. Stone M.D., Nelsestuen G.L. Vitamin K: Blood Coagulation and Use in Therapy. Encyclopedia of Biological Chemistry. Elsevier. 2004. P. 394. https://doi.org/10.1016/B0-12-443710-9/00738-9
  18. Tran T., Saheba E., Arcerio A.V. et al. // Bioorg. Med. Chem. 2004. V. 12. P. 4809–4813. https://doi.org/10.1007/s00044-016-1550-x
  19. Lobermann F., Weisheit L., Trauner D. // Org. Lett. 2013. V.15. P. 4324. https://doi.org/10.1021/ol401787n
  20. Hielscher R., Yegres M., Voicescu M. et al. // Biochemistry. 2013. V. 52. P. 8993. https://doi.org/10.1021/bi4009903
  21. Lu X., Altharawi A., Gut J. et al. // Med. Chem. Lett. 2012. V. 3. P. 1029. https://doi.org/10.1021/ml300242v
  22. Caille J.R., Debuigne A., Jérôme R. // Macromolecules. 2005. V. 38. P. 27. https://doi.org/10.1021/MA048561O
  23. Hodge P., Gautrot J.E. // Polym. Int. 2009. V. 58. P. 261. https://doi.org/10.1002/PI.2528
  24. Riikka R. Anthraquinones from the fungus Dermocybe sanguinea as textile dyes. University of Helsinski, Helsinski, 2002. 107 p.
  25. Dulo B., Phan K., Githaiga J. // Waste and Biomass Valorization. 2021. V. 12. P. 12: 6339–6374. https://doi.org/10.1007/s12649-021-01443-9
  26. Ankudinov N.M., Nelyubina Yu.V., Perekalin D.S. // Chem. Eur. J. 2022. V. 28. P. 1. https://doi.org/10.1002/chem.202200195
  27. Er S., Suh C., Marshak M.P. et al. // Chem. Sci. 2015. V. 6. P. 885. https://doi.org/10.1039/c4sc03030c
  28. Pashanova K.I., Abakumov G.A., Markin A.V. et al. // J. Chem. Thermodyn. 2016. V. 92. P. 76. https://doi.org/10.1016/j.jct.2015.09.003
  29. Pashanova K.I., Goryunova P.E., Sologubov S.S. et al. // J. Chem. Eng. Data. 2021. V. 66. P. 1970. https://doi.org/10.1021/acs.jced.0c01042
  30. Omura K. // Synthesis. 1998. V. 1998. P. 1145. https://doi.org/10.1055/s-1998-2118
  31. Lebedev B., Kulagina T., Smirnova N. et al. // Macromol. Chem. Phys. 2004. V. 205. P. 230. https://doi.org/10.1002/macp.200300039
  32. Vanderzee C.E., Månsson M., Sunner S. // J. Chem. Thermodyn. 1972. V. 4. P. 533. https://doi.org/10.1016/0021-9614(72)90075-4
  33. Rossini F.D. Experimental Thermochemistry. Interscience, New York, 1956. P. 75.
  34. Wagman D.D., Evans W.H., Parker V.B. et al. // J. Phys. Chem. Ref. Data 1982. V. 11. Suppl. 2.
  35. Washburh E.W. // J. Res. Natl. Bur. Standards. 1933. V. 10. P. 525.
  36. Cox J.D., Wagman D.D., Medvedev V.A. CODATA Key Values for Thermodynamics. Hemisphere Publishing Corp.: New York, 1989.
  37. Pilcher G., Sutton L.E. // J. Chem. Soc. 1956. P. 2695.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (7KB)

Copyright (c) 2023 П.Е. Горюнова, К.И. Пашанова, Г.А. Новичков, Н.Н. Смирнова, А.В. Пискунов, А.В. Маркин

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).