Investigation of the Spectra of Electronic Transitions in Small Clusters of the Pigment Yellow 3
- Authors: Degtyarev A.A.1, Rostova D.P.1, D’yachkova T.P.1, Trishina A.V.1
-
Affiliations:
- Tambov State Technical University
- Issue: Vol 97, No 10 (2023)
- Pages: 1447-1456
- Section: СТРОЕНИЕ ВЕЩЕСТВА И КВАНТОВАЯ ХИМИЯ
- Submitted: 18.10.2023
- Published: 01.10.2023
- URL: https://ogarev-online.ru/0044-4537/article/view/140328
- DOI: https://doi.org/10.31857/S0044453723100059
- EDN: https://elibrary.ru/IHRLJV
- ID: 140328
Cite item
Abstract
Electronic absorption spectra were calculated in the visible region for clusters of the pigment Yellow 3 that comprise one, two, and four molecules. The geometry was optimized by the PBEh-3c and B3LYP-D4/def2-SVPD methods. The results obtained by the B3LYP-D4/def2-SVPD method correlate best with the experimental data. The spectral characteristics were calculated by the TD-DFT and sTD-DFT methods with the PBE0 functional and the def2-SVPD basis set. By analyzing the natural transition orbitals (NTOs) and changing the electron density during the formation of excited states of the studied clusters, it was shown that the main contribution to the spectral lines in the visible range is made by the density transfer from the aromatic rings to the nitro group and the conjugated bond system in the center of the molecule. In this case, for the crystalline state of matter, all excited states are delocalized, and the main contribution to the intermolecular transfer of the electron density is made by the formation of excitons.
Keywords
About the authors
A. A. Degtyarev
Tambov State Technical University
Email: ad.dycost@gmail.com
392000, Tambov, Russia
D. P. Rostova
Tambov State Technical University
Email: ad.dycost@gmail.com
392000, Tambov, Russia
T. P. D’yachkova
Tambov State Technical University
Email: ad.dycost@gmail.com
392000, Tambov, Russia
A. V. Trishina
Tambov State Technical University
Author for correspondence.
Email: ad.dycost@gmail.com
392000, Tambov, Russia
References
- Лаптев Н.Г., Богословский А.М. Химия красителей. М.: Химия, 1970. 424 с.
- Whitaker A. // Zeitschrift für Kristallographie – Crystalline Materials. 1983. V. 163. P. 19. https://doi.org/10.1524/zkri.1983.163.14.19
- Венкатараман К. Химия синтетических красителей. Т. 3. Л.: Химия, 1974. 464 с.
- Венкатараман К. Химия синтетических красителей. Т. 4. Л.: Химия, 1975. 488 с.
- Ибраев Н.Х., Селиверстова Е.В., Артюхов В.Я. // Изв. вузов. Физика. 2014. Т. 57. № 9. С. 9.
- Whitaker A. // J. of the Society of Dyers and Colourists. 1983. V. 99. P. 121.
- Grimme S., Brandenburg J.G., Bannwarth C., Hansen A. // J. of Chemical Physics. 2015. V. 143. № 5. P. 054107. https://doi.org/10.1063/1.4927476
- Lee C., Yang W., Parr R.G. // Phys. Rev B. 1988. V. 37. P. 785. https://doi.org/10.1103/PhysRevB.37.785
- Caldeweyher E., Ehlert S., Hansen A. // J. of Chemical Physics. 2019. V. 150. № 15. P. 154122. https://doi.org/10.1063/1.5090222
- Rappoport D., Furche F. // Ibid. 2010. V. 133. № 13. P. 134105-11. https://doi.org/10.1063/1.3484283
- Runge E., Gross E.K.U. // Physical Review Letters. 1984. V. 52. № 12. P. 997. https://doi.org/10.1103/physrevlett.52.997
- Bannwarth C., Grimme S. // Computational and Theoretical Chemistry. 2014. V. 1040–1041. P. 45. https://doi.org/10.1016/j.comptc.2014.02.023
- De Wergifosse M., Seibert J., Grimme S. // The J. of Chemical Physics. 2020. V. 153. № 8. P. 084116. https://doi.org/10.1063/5.0020543
- Perdew J.B., Ernzerhof M., Burke K. // J. Chem. Phys. 1996. V. 105. № 22. P. 9982. https://doi.org/10.1063/1.472933
- Jacquemin D., Perpète E.A., Scuseria G.E. et al. // J. of Chemical Theory and Computation. 2008. V. 4. № 1. P. 123. https://doi.org/10.1021/ct700187z
- Jacquemin D., Planchat A., Adamo C., Mennucci B. // J.of Chemical Theory and Computation. 2012. V. 8. № 7. P. 2359. https://doi.org/10.1021/ct300326f
- Jacquemin D., Perpète E.A., Ciofini I., Adamo C. // Theoretical Chemistry Accounts. 2008. V. 120. № 4–6. P. 405. https://doi.org/10.1007/s00214-008-0424-9
- Han J., Liu X., Sun C. et al. // RSC Advances. 2018. V. 8. № 52. P. 29589. https://doi.org/10.1039/c8ra05812a
- Tsai H.-H.G., Sun H.-L.S., Tan C.-J. // The J. of Physical Chemistry A. 2010. V. 114. № 12. P. 4065. https://doi.org/10.1021/jp100022y
- Mahamiya V., Bhattacharyya P., Shukla A. // ACS Omega. 2022. V. 7. P. 48261. https://doi.org/10.1021/acsomega.2c06373
- Rappoport D., Furche F. // The Journal of Chemical Physics. 2010. V. 133. № 13. P. 134105. 10.1063/1.3484283' target='_blank'>https://doi.org/doi: 10.1063/1.3484283.
- Mera-Adasme R., Xu W.-H., Sundholm D., Mendizabal F. // Physical Chemistry Chemical Physics. 2016. V. 18. № 40. P. 27877. 10.1039/c6cp04627d' target='_blank'>https://doi.org/doi: 10.1039/c6cp04627d.
- Neese F. // WIREs Comput Mol Sci. 2017. V. 8. № 1. P. e1327. https://doi.org/10.1002/wcms.1327
- Allouche A.R. // J. of Computational Chemistry. 2011. V. 32. P. 174. https://doi.org/10.1002/jcc.21600
- Berraud-Pache R., Neese F., Bistoni G., Izsák R. // J. Chem. Theory Comput. 2020. V. 16. № 1. P. 564. https://doi.org/10.1021/acs.jctc.9b00559
- Martin R.L. // The J. of Chemical Physics. 2003. V. 118. № 11. P. 4775. https://doi.org/10.1063/1.1558471
Supplementary files
