Information Entropy of Parallel and Independent Chemical Reactions

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

In mathematical chemistry problems, a chemical reaction is represented as a transformation of one molecular ensemble into another, and information entropy and related parameters are often used to quantify changes in the complexity of molecules. The information entropy of a chemical reaction is calculated as the difference between the values corresponding to an ensemble of products and an ensemble of reagents. Previously, we have shown that the information entropy of molecular ensembles depends not only on the information entropy of individual molecules, but also on cooperative entropy—an emergent parameter that arises when molecules are combined into an ensemble. Inclusion of this parameter in calculation determines the peculiarities of calculating the information entropy for interrelated chemical reactions. The article considers systems of independent and parallel chemical reactions and gives an analytical dependence that correlates the information entropy of the total process with the parameters of individual reactions.

About the authors

A. D. Zimina

Institute of Petrochemistry and Catalysis, Ufa Federal Research Center, Russian Academy of Sciences

Email: diozno@mail.ru
450075, Ufa, Russia

I. S. Shepelevich

Institute of Petrochemistry and Catalysis, Ufa Federal Research Center, Russian Academy of Sciences

Email: diozno@mail.ru
450075, Ufa, Russia

D. Sh. Sabirov

Institute of Petrochemistry and Catalysis, Ufa Federal Research Center, Russian Academy of Sciences

Author for correspondence.
Email: diozno@mail.ru
450075, Ufa, Russia

References

  1. Станкевич И.М., Станкевич И.В., Зефиров Н.С. // Успехи химии. 1988. Т. 57. С. 191–208.
  2. Sabirov D.S., Shepelevich I.S. // Entropy. 2021. V. 23. P. 1240.
  3. Barigye S.J., Marrero-Ponce Y., Pérez-Giménez F., Bonchev D. // Mol. Divers. 2014. V. 18. P. 673.
  4. Dehmer M., Mowshowitz A. // Inf. Sci. 2011. V. 181. P. 57.
  5. Basak S., Harriss D., Magnuson V. // J. Pharm. Sci. 1984. V. 73. P. 429.
  6. Basak S.C. // Big Data Analytics in Chemoinformatics and Bioinformatics with Applications to Computer-Aided Drug Design, Cancer Biology, Emerging Pathogens and Computational Toxicology. Eds: Basak S.C., Vračko M. Elsevier, 2023. P. 3–35.
  7. Bonchev D. // Bulgar. Chem. Commun. 1995. V. 28. P. 567.
  8. Sabirov D.S. // Comput. Theor. Chem. 2016. V. 1097. P. 83.
  9. Sabirov D.S., Shepelevich I.S. // Comput. Theor. Chem. 2015. V. 1073. P. 61.
  10. Sabirov D.S., Ori O., László I. // Fullerene Nanotube Carbon Nanostruct. 2018. V. 26. P. 100.
  11. Augustine T., Roy S., Sahaya V.J. et al. // Mol. Phys. 2023. V. 121. P. e2179858.
  12. Krivovichev S. // Mineral. Mag. 2013. V. 77. P. 275.
  13. Aksenov S.M., Yamnova N.A., Borovikova E.Y. et al. // J. Struct. Chem. 2020. V. 61. P. 1760.
  14. Bindi L., Nespolo M., Krivovichev S.V. et al. // Rep. Prog. Phys. 2020. V. 83. P. 106501.
  15. Krivovichev S.V., Krivovichev V.G., Hazen R.M. // Eur. J. Miner. 2018. V. 30. P. 231.
  16. Krivovichev S.V., Hawthorne F., Williams P.A. // Struct. Chem. 2016. V. 28. P. 153.
  17. Krivovichev S.V., Krivovichev V.G., Hazen R.M. et al. // Mineral. Mag. 2022. V. 86. P. 183.
  18. Banaru D.A., Hornfeck W., Aksenov S.M., Banaru A.M. // CrystEngComm. 2023. https://doi.org/10.1039/D2CE01542K
  19. Banaru A., Aksenov S., Krivovichev S. // Symmetry. 2021. V. 13. P. 1399.
  20. Jacob K., Clement J., Arockiaraj M. et al. // J. Mol. Struct. 2023. V. 1277. P. 134786.
  21. Plášil J. // Eur. J. Minerol. 2018. V. 30. P. 237.
  22. Hanif M.F., Mahmood H. // Polycyclic Aromatic Compounds. 2022. https://doi.org/10.1080/10406638.2022.2149575
  23. Sabirov D.S., Ori O., Tukhbatullina A.A., Shepelevich I.S. // Symmetry. 2021. V. 13. P. 1899.
  24. Augustine T., Santiago R. // Symmetry. 2023. V. 15. P. 635.
  25. Rahul M.P., Clement J. // Eur. Phys. J. Plus. 2022. V. 137. P. 1365.
  26. Rahul M., Clement J., Singh J.J. et al. // J. Mol. Struct. 2022. V. 1260. P. 132797.
  27. Sabirov D., Tukhbatullina A., Shepelevich I. // Liquids. 2021. V. 1. P. 25.
  28. Baby A., Julietraja K., Xavier D.A. // Polycyclic Aromatic Compounds. 2023. https://doi.org/10.1080/10406638.2023.2179641
  29. Castellano G., Lara A., Torrens F. // Phytochemistry. 2014. V. 97. P. 62.
  30. Castellano G., Torrens F. // Phytochemistry. 2015. V. 116. P. 305.
  31. Sabirov D., Koledina K. // EPJ Web. 2020. V. 244. P. 01016.
  32. Karreman G. // Bull. Math. Biol. 1955. V. 17. P. 279.
  33. Кобозев Н.И. // Журн. физ. химии. 1966. Т. 40. С. 281.
  34. Кобозев Н.И., Страхов Б.В., Рубашов А.М. // Там же. 1971. Т. 45. С. 86.
  35. Кобозев Н.И., Страхов Б.В., Рубашов А.М. // Там же. 1971. Т. 45. С. 375.
  36. Sabirov D.S., Osawa E. // J. Chem. Inf. Model. 2015. V. 55. P. 1576.
  37. Sabirov D.S., Sokolov V.I., Terentyev O.A. // RSC Adv. 2016. V. 6. P. 72230.
  38. Sabirov D.S., Tukhbatullina A.A., Shepelevich I.S. // Symmetry. 2022. V. 14. P. 1800.
  39. Feng B., Zhuang X. // Acta Chimica Sinica. 2020. V. 78. P. 833.
  40. Champion Y., Thurieau N. // Sci. Rep. 2020. V. 10. P. 10801.
  41. Бальмаков М.Д. // Успехи физ. наук. 1999. Т. 169. С. 1273.
  42. Кадомцев Б.Б. // Там же. 1994. Т. 164. С. 449.
  43. Sabirov D.S. // Comput. Theor. Chem. 2018. V. 1123. P. 169.
  44. Sabirov D.S. // Ibid. 2020. V. 1187. P. 112933.
  45. Sabirov D.S., Tukhbatullina A.A., Shepelevich I.S. // J. Mol. Graph. Model. 2022. V. 110. P. 108052.
  46. Бенсон С. Термохимическая кинетика. М.: Мир, 1971. 308 с.
  47. Sabirov D.Sh. // Understanding Information Entropy. Ed.: Kumar V. Nova Publishers, 2023.
  48. Nielsen M.A., Chuang I.L. Quantum Computation and Quantum Information. Cambridge University Press, 2001. P. 822.
  49. Sharma A., Thakur P., Kumar G., Kumar A. // Modern Phys. Lett. A. 2021. V. 36. P. 2150065.
  50. Matsubara S. // Chem. Lett. 2021. V. 50. P. 475.
  51. Grzybowski A.B., Badowski T., Molga K., Szymkuć S. // WIREs Comput. Mol. Sci. 2023. V. 13. P. e1630.
  52. Тухбатуллина А.А., Шепелевич И.С., Сабиров Д.Ш. // Вестн. Башкирск. ун-та. 2022. Т. 27. № 2. С. 349.
  53. Ugi I., Gillespie P. // Angew. Chem. 1971. V. 10. P. 914.
  54. Hunter K.C., East A.L.L. // J. Phys. Chem. A. 2002. V. 106. P. 1346.
  55. Bertz S.H. // New J. Chem. 2003. V. 27. P. 860.
  56. Matsubara S. // Chem. Lett. 2021. V. 50. P. 475.
  57. Жданов Ю.А. Энтропия информации в органической химии. Ростов н/Д: изд-во Ростовского ун-та, 1979. 56 с.
  58. Коледина К.Ф. // Математическое моделирование. 2022. Т. 34. С. 97.
  59. Sabirov D.S., Shepelevich I.S., Tumanskii B.L. // Comput. Theor. Chem. 2018. V. 1138. P. 84.

Supplementary files

Supplementary Files
Action
1. JATS XML
2.

Download (16KB)

Copyright (c) 2023 А.Д. Зимина, И.С. Шепелевич, Д.Ш. Сабиров

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».