Information Entropy of Parallel and Independent Chemical Reactions
- Authors: Zimina A.D.1, Shepelevich I.S.1, Sabirov D.S.1
-
Affiliations:
- Institute of Petrochemistry and Catalysis, Ufa Federal Research Center, Russian Academy of Sciences
- Issue: Vol 97, No 10 (2023)
- Pages: 1393-1397
- Section: ХИМИЧЕСКАЯ ТЕРМОДИНАМИКА И ТЕРМОХИМИЯ
- Submitted: 18.10.2023
- Published: 01.10.2023
- URL: https://ogarev-online.ru/0044-4537/article/view/140320
- DOI: https://doi.org/10.31857/S0044453723100291
- EDN: https://elibrary.ru/HARXZC
- ID: 140320
Cite item
Abstract
In mathematical chemistry problems, a chemical reaction is represented as a transformation of one molecular ensemble into another, and information entropy and related parameters are often used to quantify changes in the complexity of molecules. The information entropy of a chemical reaction is calculated as the difference between the values corresponding to an ensemble of products and an ensemble of reagents. Previously, we have shown that the information entropy of molecular ensembles depends not only on the information entropy of individual molecules, but also on cooperative entropy—an emergent parameter that arises when molecules are combined into an ensemble. Inclusion of this parameter in calculation determines the peculiarities of calculating the information entropy for interrelated chemical reactions. The article considers systems of independent and parallel chemical reactions and gives an analytical dependence that correlates the information entropy of the total process with the parameters of individual reactions.
About the authors
A. D. Zimina
Institute of Petrochemistry and Catalysis, Ufa Federal Research Center, Russian Academy of Sciences
Email: diozno@mail.ru
450075, Ufa, Russia
I. S. Shepelevich
Institute of Petrochemistry and Catalysis, Ufa Federal Research Center, Russian Academy of Sciences
Email: diozno@mail.ru
450075, Ufa, Russia
D. Sh. Sabirov
Institute of Petrochemistry and Catalysis, Ufa Federal Research Center, Russian Academy of Sciences
Author for correspondence.
Email: diozno@mail.ru
450075, Ufa, Russia
References
- Станкевич И.М., Станкевич И.В., Зефиров Н.С. // Успехи химии. 1988. Т. 57. С. 191–208.
- Sabirov D.S., Shepelevich I.S. // Entropy. 2021. V. 23. P. 1240.
- Barigye S.J., Marrero-Ponce Y., Pérez-Giménez F., Bonchev D. // Mol. Divers. 2014. V. 18. P. 673.
- Dehmer M., Mowshowitz A. // Inf. Sci. 2011. V. 181. P. 57.
- Basak S., Harriss D., Magnuson V. // J. Pharm. Sci. 1984. V. 73. P. 429.
- Basak S.C. // Big Data Analytics in Chemoinformatics and Bioinformatics with Applications to Computer-Aided Drug Design, Cancer Biology, Emerging Pathogens and Computational Toxicology. Eds: Basak S.C., Vračko M. Elsevier, 2023. P. 3–35.
- Bonchev D. // Bulgar. Chem. Commun. 1995. V. 28. P. 567.
- Sabirov D.S. // Comput. Theor. Chem. 2016. V. 1097. P. 83.
- Sabirov D.S., Shepelevich I.S. // Comput. Theor. Chem. 2015. V. 1073. P. 61.
- Sabirov D.S., Ori O., László I. // Fullerene Nanotube Carbon Nanostruct. 2018. V. 26. P. 100.
- Augustine T., Roy S., Sahaya V.J. et al. // Mol. Phys. 2023. V. 121. P. e2179858.
- Krivovichev S. // Mineral. Mag. 2013. V. 77. P. 275.
- Aksenov S.M., Yamnova N.A., Borovikova E.Y. et al. // J. Struct. Chem. 2020. V. 61. P. 1760.
- Bindi L., Nespolo M., Krivovichev S.V. et al. // Rep. Prog. Phys. 2020. V. 83. P. 106501.
- Krivovichev S.V., Krivovichev V.G., Hazen R.M. // Eur. J. Miner. 2018. V. 30. P. 231.
- Krivovichev S.V., Hawthorne F., Williams P.A. // Struct. Chem. 2016. V. 28. P. 153.
- Krivovichev S.V., Krivovichev V.G., Hazen R.M. et al. // Mineral. Mag. 2022. V. 86. P. 183.
- Banaru D.A., Hornfeck W., Aksenov S.M., Banaru A.M. // CrystEngComm. 2023. https://doi.org/10.1039/D2CE01542K
- Banaru A., Aksenov S., Krivovichev S. // Symmetry. 2021. V. 13. P. 1399.
- Jacob K., Clement J., Arockiaraj M. et al. // J. Mol. Struct. 2023. V. 1277. P. 134786.
- Plášil J. // Eur. J. Minerol. 2018. V. 30. P. 237.
- Hanif M.F., Mahmood H. // Polycyclic Aromatic Compounds. 2022. https://doi.org/10.1080/10406638.2022.2149575
- Sabirov D.S., Ori O., Tukhbatullina A.A., Shepelevich I.S. // Symmetry. 2021. V. 13. P. 1899.
- Augustine T., Santiago R. // Symmetry. 2023. V. 15. P. 635.
- Rahul M.P., Clement J. // Eur. Phys. J. Plus. 2022. V. 137. P. 1365.
- Rahul M., Clement J., Singh J.J. et al. // J. Mol. Struct. 2022. V. 1260. P. 132797.
- Sabirov D., Tukhbatullina A., Shepelevich I. // Liquids. 2021. V. 1. P. 25.
- Baby A., Julietraja K., Xavier D.A. // Polycyclic Aromatic Compounds. 2023. https://doi.org/10.1080/10406638.2023.2179641
- Castellano G., Lara A., Torrens F. // Phytochemistry. 2014. V. 97. P. 62.
- Castellano G., Torrens F. // Phytochemistry. 2015. V. 116. P. 305.
- Sabirov D., Koledina K. // EPJ Web. 2020. V. 244. P. 01016.
- Karreman G. // Bull. Math. Biol. 1955. V. 17. P. 279.
- Кобозев Н.И. // Журн. физ. химии. 1966. Т. 40. С. 281.
- Кобозев Н.И., Страхов Б.В., Рубашов А.М. // Там же. 1971. Т. 45. С. 86.
- Кобозев Н.И., Страхов Б.В., Рубашов А.М. // Там же. 1971. Т. 45. С. 375.
- Sabirov D.S., Osawa E. // J. Chem. Inf. Model. 2015. V. 55. P. 1576.
- Sabirov D.S., Sokolov V.I., Terentyev O.A. // RSC Adv. 2016. V. 6. P. 72230.
- Sabirov D.S., Tukhbatullina A.A., Shepelevich I.S. // Symmetry. 2022. V. 14. P. 1800.
- Feng B., Zhuang X. // Acta Chimica Sinica. 2020. V. 78. P. 833.
- Champion Y., Thurieau N. // Sci. Rep. 2020. V. 10. P. 10801.
- Бальмаков М.Д. // Успехи физ. наук. 1999. Т. 169. С. 1273.
- Кадомцев Б.Б. // Там же. 1994. Т. 164. С. 449.
- Sabirov D.S. // Comput. Theor. Chem. 2018. V. 1123. P. 169.
- Sabirov D.S. // Ibid. 2020. V. 1187. P. 112933.
- Sabirov D.S., Tukhbatullina A.A., Shepelevich I.S. // J. Mol. Graph. Model. 2022. V. 110. P. 108052.
- Бенсон С. Термохимическая кинетика. М.: Мир, 1971. 308 с.
- Sabirov D.Sh. // Understanding Information Entropy. Ed.: Kumar V. Nova Publishers, 2023.
- Nielsen M.A., Chuang I.L. Quantum Computation and Quantum Information. Cambridge University Press, 2001. P. 822.
- Sharma A., Thakur P., Kumar G., Kumar A. // Modern Phys. Lett. A. 2021. V. 36. P. 2150065.
- Matsubara S. // Chem. Lett. 2021. V. 50. P. 475.
- Grzybowski A.B., Badowski T., Molga K., Szymkuć S. // WIREs Comput. Mol. Sci. 2023. V. 13. P. e1630.
- Тухбатуллина А.А., Шепелевич И.С., Сабиров Д.Ш. // Вестн. Башкирск. ун-та. 2022. Т. 27. № 2. С. 349.
- Ugi I., Gillespie P. // Angew. Chem. 1971. V. 10. P. 914.
- Hunter K.C., East A.L.L. // J. Phys. Chem. A. 2002. V. 106. P. 1346.
- Bertz S.H. // New J. Chem. 2003. V. 27. P. 860.
- Matsubara S. // Chem. Lett. 2021. V. 50. P. 475.
- Жданов Ю.А. Энтропия информации в органической химии. Ростов н/Д: изд-во Ростовского ун-та, 1979. 56 с.
- Коледина К.Ф. // Математическое моделирование. 2022. Т. 34. С. 97.
- Sabirov D.S., Shepelevich I.S., Tumanskii B.L. // Comput. Theor. Chem. 2018. V. 1138. P. 84.
Supplementary files
