ДИФФУЗИЯ АТОМОВ ВОДОРОДА ИЗ ДИЭЛЕКТРИЧЕСКИХ ПОДЛОЖЕК Si3N4 В АМОРФНЫЕ И ПОЛИКРИСТАЛЛИЧЕСКИЕ ПЛЕНКИ Si И Ge

Обложка

Цитировать

Полный текст

Аннотация

Методами дифракция быстрых отраженных электронов и ИК-спектроскопии изучены поликристаллические и аморфные пленки Si и Ge, выращенные на диэлектрических подложках Si3N4/SiO2/Si(001). В ИK-спектрах наблюдается уменьшение интенсивности N–H-полос поглощения в слоях Si3N4, связанное с переходом атомов водорода в растущие пленки Si и Ge. Этот процесс начинается уже при температуре роста пленки 30◦С и усиливается с увеличением температуры роста (30–500◦С) и толщины пленок Si и Ge (50–200 нм). Рассмотрена модель, основанная на предположении, что переход атомов водорода из диэлектрического слоя Si3N4 в растущую пленку Si или Ge контролируется разницей в положении уровней химического потенциала атомов водорода в них и не связан с термодиффузией. Процесс происходит только во время роста слоев Si и Ge и прекращается с его остановкой и с выравниванием уровней химического потенциала.

Об авторах

Л. В. Арапкина

Институт общей физики им. А.М. Прохорова Российской академии наук

Email: arapkina@kapella.gpi.ru
Россия, Москва

К. В. Чиж

Институт общей физики им. А.М. Прохорова Российской академии наук

Email: arapkina@kapella.gpi.ru
Россия, Москва

Д. Б. Ставровский

Институт общей физики им. А.М. Прохорова Российской академии наук

Email: arapkina@kapella.gpi.ru
Россия, Москва

В. П. Дубков

Институт общей физики им. А.М. Прохорова Российской академии наук

Email: arapkina@kapella.gpi.ru
Россия, Москва

М. С. Сторожевых

Институт общей физики им. А.М. Прохорова Российской академии наук

Email: arapkina@kapella.gpi.ru
Россия, Москва

В. А. Юрьев

Институт общей физики им. А.М. Прохорова Российской академии наук

Автор, ответственный за переписку.
Email: arapkina@kapella.gpi.ru
Россия, Москва

Список литературы

  1. B. J. Hallam, P. G. Hamer, A. M. C. Wenham, C. E. Chan, B. V. Stefani, and S. Wenham, Prog. Photovolt. Res. Appl. 1, 1217 (2020).
  2. W. Soppe, H. Rieffe, and A. Weeber, Prog. Photovolt. Res. Appl. 13, 551 (2005).
  3. R. S. Bonilla, B. Hoex, P. Hamer, and P. R. Wilshaw, Phys. Stat. Sol. (a) 214, 1700293 (2017).
  4. M. Z. Rahman, Renew. Sustain. Energy Rev. 30, 734 (2014).
  5. A. G. Aberle, Sol. Energy Mater. Sol. Cells 65, 239 (2001).
  6. J. Z. Xie, S. P. Murarka, X. S. Guo, and W. A. Lanford, J. Vac. Sci. Technol. B 7, 150 (1989).
  7. P. S. Peercy, H. J. Stein, B. L. Doyle, and S. T. Picraux, J. Electron. Mater. 8, 11 (1979).
  8. C. Boehme and G. Lucovsky, J. Appl. Phys. 88, 6055 (2000).
  9. W. Beyer, Phys. Stat. Sol. (a) 213, 1661 (2016).
  10. W. Beyer, Sol. Energy Mater. Sol. Cells 78, 235 (2003).
  11. C. G. V. D. Walle and R. A. Street, Mat. Res. Soc. Symp. Proc. 377, 389 (1995).
  12. J. Robertson, Phil. Mag. B 69, 307 (1994).
  13. R. A. Street, Phys. Rev. B 43, 2454 (1991).
  14. P. V. Santos, N. M. Johnson, R. A. Street, M. Hack, R. Thompson, and C. C. Tsai, Phys. Rev. B 47, 10244 (1993).
  15. W. B. Jackson and C. C. Tsai, Phys. Rev. B 45, 6564 (1992).
  16. S. C. Deane and M. J. Powell, J. Non-Cryst. Sol. 198200, 295 (1996).
  17. К. В. Чиж, Л. В. Арапкина, В. П. Дубков, Д. Б. Ставровский, В. А. Юрьев, М. С. Сторожевых, Автометрия 58, 79 (2022).
  18. P. Paduschek and P. Eichinger, Appl. Phys. Lett. 36, 62 (1980).
  19. H. J. Stein, J. Electron. Mater. 5, 161 (1976).
  20. K.V. Chizh, L.V. Arapkina, D.B. Stavrovsky, P. I. Gaiduk, and V. A. Yuryev, Mater. Sci. Semicond. Process. 99, 78 (2019).
  21. L. V. Arapkina, K. V. Chizh, D. B. Stavrovskii, V. P. Dubkov, E. P. Lazareva, and V. A. Yuryev, Sol. Energy Mater. Sol. Cells 230, 111231 (2021).
  22. M. S. Storozhevykh, V. P. Dubkov, L. V. Arapkina, K. V. Chizh, S. A. Mironov, V. A. Chapnin, and V. A. Yuryev, Proc. SPIE 10248, 102480O (2017).
  23. D. Davazoglou and V. E. Vamvakas, J. Electrochem. Soc. 150, F90 (2003).
  24. E. A. Taft, J. Electrochem. Soc. 118, 1341 (1971).
  25. W. Beyer, J. Herion, H. Wagner, and U. Zastrow, Phil. Mag. B 63, 269 (1991).
  26. A. Van Wieringen and N. Warmoltz, Physica 22, 849 (1956).
  27. Y. L. Huang, Y. Ma, R. Job, and A. G. Ulyashin, J. Appl. Phys. 96, 7080 (2004).
  28. W. Beyer, J. Non-Cryst. Sol. 198-200, 40 (1996).

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2024

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).