NANOCRYSTAL SHAPE ANISOTROPY DETERMINATION USING EXAFS
- Authors: Svit K.A.1, Zhuravlev K.S.1
-
Affiliations:
- Rzhanov institute of semiconductor physics, Siberian Branch of the Russian Academy of Sciences
- Issue: Vol 165, No 1 (2024)
- Pages: 65-72
- Section: Articles
- URL: https://ogarev-online.ru/0044-4510/article/view/256898
- DOI: https://doi.org/10.31857/S0044451024010073
- ID: 256898
Cite item
Abstract
Using the set of the nanocrystals (NC) having the rectangular parallelepiped shape and a cubic crystal structure of the zinc-blende type as model system, the possibilities of determining the NC shape anisotropy using the polarized EXAFS technique were demonstrated. It was shown that the effective value of the coordination number of absorbing atoms in an NC with anisotropic shape depends on its size and the orientation of the X-ray radiation polarization vector relative to the NC surface. The effective values of the coordination numbers of the first coordination sphere of atoms in NCs having different size and surface composition were modeled. Taking into account the influence of the experimental error of the EXAFS method the possibilities of the model applicability for analysis of the real systems with NC were analyzed.
Keywords
About the authors
K. A. Svit
Rzhanov institute of semiconductor physics, Siberian Branch of the Russian Academy of Sciences
Author for correspondence.
Email: svitkirill1989@gmail.com
Russian Federation, 630090, Novosibirsk
K. S. Zhuravlev
Rzhanov institute of semiconductor physics, Siberian Branch of the Russian Academy of Sciences
Email: svitkirill1989@gmail.com
Russian Federation, 630090, Novosibirsk
References
- M. A. Cotta, ACS Appl. Nano Mater. 3, 4920 (2020).
- D. S. Abramkin and V. V. Atuchin, Nanomaterials12, 3794 (2022).
- W. C. Chao, T. H. Chiang, Y. C. Liu, Z. X. Huang,C. C. Liao, C. H. Chu, C. H. Wang, H. W. Tseng, W. Y. Hung, and P. T. Chou, Commun. Mater. 2, 96 (2021).
- Al. L. Efros, M. Rosen, M. Kuno, M. Nirmal,D. J. Norris, and M. Bawendi, Phys. Rev. B 54, 4843 (1996).
- E. S. Smotkin, C. Lee, A. J. Bard, A. Campion,M. A. Fox, T. E. Mallouk, S. E. Webber, and J. M. White, Chem. Phys. Lett. 152, 265 (1988).
- J. J. Shiang, S. H. Risbud, and A. P. Alivisatos, J. Chem. Phys. 98, 8432 (1993).
- P. Facci and M. P. Montana, Solid State Commun.108, 5 (1998).
- A. Aleksandrov, V. G. Mansurov, and K. S. Zhuravlev, Physica E 75, 309 (2016).
- V. G. Mansurov, Yu. G. Galittsyn, A. Yu. Nikitin,K. S. Zhuravlev, and Ph. Vennegues, Phys. Stat. Sol. (c) 3, 1548 (2006).
- S. Hovmoller, X. Zou, and T. E. Weirich, Adv. ImaginElectron Phys. 123, 257 (2002).
- A. V. Nabok, A. K. Ray, and A. K. Hassan, J. Appl.Phys. 88, 1333 (2000).
- T. M. Usher, D. Olds, J. Liku, and K. Page, ActaCryst. A74, 322 (2018).
- C. L. Farrow, C. Shi, P. Juhas, X. Peng, and S. J. L. Billinge, J. Appl. Crystallogr, 47, 561 (2014).
- C. Shi, E. L. Redmond, A. Mazaheripour, P. Juhas,T. F. Fuller, and S. J. L. Billinge, J. Phys. Chem. C 117, 7226 (2013).
- M. Khalkhali, Q. Liu, H. Zeng, and H. Zhang, Sci.Rep. 5, 14267 (2015).
- A. Jentys, Phys. Chem. Chem. Phys. 1, 4059 (1999).
- G. Agostini, A. Piovano, L. Bertinetti, R. Pellegrini,G. Leofanti, E. Groppo, and C. Lamberti, J. Phys. Chem. C 118, 4085, (2014).
- R. B. Gregor and F. W. Lytle, J. Catal. 63, 476, (1980).
- M. Shirai, T. Inoue, H. Onishi, K. Asakura, and Y. Iwasawa, J. Catal. 145, 159 (1994).
- C. Giansante and I. Infante, J. Phys. Chem. Lett. 8, 8209 (2017).
- C. J. P. Clark and W. R. Flavell, Chem. Rec. 18, 1 (2018).
- N. S. Marinkovic, K. Sasaki, and R. R. Adzic, J.Electrochem. Soc. 165, J3222 (2018).
- D. Kido and K. Asakura, Acc. Mater. Surf. Res. 5, 148 (2020).
Supplementary files
