Turmeric identification and adulteration detection by digital colorometry and near-IR spectroscopy methods

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

The possibility to identify and establish the fact of turmeric adulteration by simple and affordable methods using methods of infrared spectroscopy, digital colorometry and chemometric processing of spectral data was shown. Near-infrared spectroscopy was used to differentiate between samples of turmeric powder purchased in India, made by grinding the roots, and commercial samples, and to separate them from samples with impurities of flour, starch, breadcrumb and chalk by analyzing diffuse reflectance spectra using principal component methods, hierarchical cluster analysis and formal independent class analogy modeling. The same approaches were applied to the simpler and less costly colorometric method. Chemometric processing of the obtained data confirmed the lack of similarity of the analyzed turmeric samples with samples containing additives and allowed the determination of impurities using multivariate regression analysis algorithms. Comparison of the results obtained by IR spectroscopy and digital colorometry showed their equivalent efficiency, which allowed us to recommend the more affordable colorometric method for routine quality control and detection of turmeric adulteration.

作者简介

O. Emelyanov

Alexander Grigorievich and Nikolai Grigorievich Stoletov Vladimir State University

Vladimir, Russia

V. Amelin

Alexander Grigorievich and Nikolai Grigorievich Stoletov Vladimir State University; All-Russian State Center for Quality and Standardization of Animal Drugs and Feeds

Email: amelinvg@mail.ru
Vladimir, Russia; Vladimir, Russia

A. Tretyakov

All-Russian State Center for Quality and Standardization of Animal Drugs and Feeds

Vladimir, Russia

参考

  1. Запорожченко А.А., Суботялов М.А. Биологическая активность и терапевтический потенциал Curcuma longa (обзор литературы) // Сибирский научный медицинский журнал. 2023. Т. 43. № 3. С. 15. https://doi.org/10.18699/SSMJ20230302
  2. Wojcik M., Krawczyk М., Wojcik Р., Cypryk К., Wozniak L.A. Molecular mechanisms underlying curcumin-mediated therapeutic effects in type 2 diabetes and cancer // Oxid. Med. Cell. Longevity. 2018. Article ID 9698258. https://doi.org/10.1155/2018/9698258
  3. Venigalla M., Gyengesi E., Munch G. Curcumin and Apigenin – novel and promising therapeutics against chronic neuroinflammation in Alzheimer’s disease // Neural Regen Res. 2015. V. 10. № 8. Р. 1182. https://doi.org/0.4103/1673-5374.162686
  4. Sasikumar B. Turmeric / Handbook of Herbs and Spices (Second edition). 2012. V. 1. Р. 526. https://doi.org/10.1533/9780857095671.526
  5. ГОСТ ISO 5562-2017. Пряности. Куркума целая и молотая (порошкообразная). Технические условия. М.: Стандартинформ, 2017. 7 с.
  6. Абдуллаева Л.С., Лучкин М.А., Лунева Т.А., Сла­щинин Д.Г. Оценка качества пряностей / ­Молодые ученые в решении актуальных проблем науки: Сборник материалов Всероссийской научно-практической конференции студентов, аспирантов и молодых ученых. 2023. С. 461.
  7. Sahu P.K., Panda J., Jogendra Kumar Y.V. V., Ranjitha S.K. A robust RP-HPLC method for determination of turmeric adulteration // J. Liq. Chromatogr. Relat. Technol. 2020. V. 43. № 7-8. P. 247. https://doi.org/10.1080/10826076.2020.1722162
  8. Вострикова Н.Л., Минаев М.Ю., Чиковани К.Г. Определение подлинности куркумы // Пищевые системы. 2021. Т. 4. № 1. С. 62. https://doi.org/10.21323/2618-9771-2021-4-1-62-70
  9. Nallappan K., Dash J., Ray S., Pesala B. Identification of adulterants in turmeric powder using terahertz spectroscopy / 2013 38th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz). 2013. P. 1. https://doi.org/10.1109/IRMMW-THz.2013.6665688
  10. Tamiji Z., Habibi Z., Pourjabbar Z., Khoshayand M.R., Sadeghi N., Hajimahmoodi M. Detection and quantification of adulteration in turmeric by spectroscopy coupled with chemometrics // J. Consum. Prot. Food Saf. 2022. V. 17. P. 221. https://doi.org/10.1007/s00003-022-01380-2
  11. Kar S., Tudu B., Jana A., Bandyopadhyay R. FT-NIR spectroscopy coupled with multivariate analysis for detection of starch adulteration in turmeric powder // Food Addit. Contam. Part A. 2019. V. 36. № 6. P. 863. https://doi.org/10.1080/19440049.2019.1600746
  12. Chaminda Bandara W.G., Kasun Prabhath G.W., Sahan Chinthana Bandara Dissanayake D.W., Herath V.R., Roshan Indika Godaliyadda G.M., Bandara Ekanayake M.P., Demini D., Madhujith T. Validation of multispectral imaging for the detection of selected adulterants in turmeric samples // J. Food Eng. 2020. V. 266. Article 109700. https://doi.org/10.1016/j.jfoodeng.2019.109700
  13. Шаока З.А.Ч., Большаков Д.С., Амелин В.Г. Использование смартфона в химическом анализе // Журн. аналит. химии. 2023. Т. 78. № 4. С. 317. (Shogah Z.A.Ch., Bolshakov D.S., Amelin V.G. Using a smartphone in chemical analysis // J. Anal. Chem. 2023. V. 78. № 4. P. 317. https://doi.org/10.31857/S0044450223030131)
  14. Amelin V.G., Emel’yanov O.E., Shogaha Z.A. Ch., Tret’yakov A.V. Determination of the mass fraction of milk fat in bottled milk using a contactless colorimetric method // J. Anal. Chem. 2024. V. 79. № 11. P. 1509. https://doi.org/10.1134/S1061934824700904
  15. Amelin V.G., Emel’yanov O.E., Shogaha Z.A. Ch., Tret’yakov A.V. Detection and identification of starch and flour adulteration by digital colorimetry and Fourier-tansform near-IR spectroscopy // J. Anal. Chem. 2024. V. 79. № 11. P. 1515. https://doi.org/10.1134/S1061934824700916
  16. Johnson J.B., Walsh K.B., Naiker M., Ameer K. The use of infrared spectroscopy for the quantification of bioactive compounds in food: A Review // Molecules. 2023. V. 28. № 7. Article 3215. https://doi.org/10.3390/molecules28073215

补充文件

附件文件
动作
1. JATS XML

版权所有 © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».