Новые многофункциональные сорбенты для ВЭЖХ на основе различных матриц, модифицированных эремомицином

Обложка

Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Получены новые сорбенты на основе силикагеля и полистирол-дивинилбензола (ПС-ДВБ) для гидрофильной хроматографии (ГИХ) с эремомицином в функциональных слоях. Хроматографические свойства новых сорбентов оценивали с использованием теста Танака для гидрофильных неподвижных фаз и путем изучения удерживания веществ различных классов в режимах ГИХ, хиральной и обращенно-фазовой хроматографии. Показано, что применение эремомицина для создания функциональных слоев приводит к увеличению гидрофильности сорбентов на разных типах матриц и позволяет экранировать их заряд. Возможно разделение 11 азотистых оснований, нуклеозидов с эффективностью до 25 000 тт/м, 7 витаминов с эффективностью до 40 000 тт/м на модифицированном сорбенте на основе аминопропилсиликагеля, а также реализация трех разных режимов ВЭЖХ на сорбенте с эремомицином на основе ПС-ДВБ.

Об авторах

Н. Ю. Чикурова

Московский государственный университет имени М.В. Ломоносова, химический факультет

Email: chernobrovkina@analyt.chem.msu.ru
119991 Россия, Москва, Ленинские горы,1

Д. С. Просунцова

Московский государственный университет имени М.В. Ломоносова, химический факультет

Email: chernobrovkina@analyt.chem.msu.ru
119991 Россия, Москва, Ленинские горы,1

А. Н. Ставрианиди

Московский государственный университет имени М.В. Ломоносова, химический факультет

Email: chernobrovkina@analyt.chem.msu.ru
119991 Россия, Москва, Ленинские горы,1

С. М. Староверов

Московский государственный университет имени М.В. Ломоносова, химический факультет

Email: chernobrovkina@analyt.chem.msu.ru
119991 Россия, Москва, Ленинские горы,1

И. А. Ананьева

Московский государственный университет имени М.В. Ломоносова, химический факультет

Email: chernobrovkina@analyt.chem.msu.ru
119991 Россия, Москва, Ленинские горы,1

А. Д. Смоленков

Московский государственный университет имени М.В. Ломоносова, химический факультет

Email: chernobrovkina@analyt.chem.msu.ru
119991 Россия, Москва, Ленинские горы,1

А. В. Чернобровкина

Московский государственный университет имени М.В. Ломоносова, химический факультет

Автор, ответственный за переписку.
Email: chernobrovkina@analyt.chem.msu.ru
119991 Россия, Москва, Ленинские горы,1

Список литературы

  1. Buszewski B., Noga S. Hydrophilic interaction liquid chromatograpy (HILIC) – A powerful separation technique // Anal. Bioanal. Chem. 2012. V. 402. P. 231.
  2. Staroverov S.M., Kuznetsov M.A., Nesterenko P.N., Vasiarov G.G., Katrukha G.S, Fedorova G.B. New chiral stationary phase with macrocyclic glycopeptide antibiotic eremomycin chemically bonded to silica // J. Chromatogr. A. 2006. V. 1108. P. 263.
  3. Kuznetsov M.A., Nesterenko P.N., Vasiyarov G.G., Staroverov S.M. Sorbents with immobilized glycopeptide antibiotics for separating optical isomers by high-performance liquid chromatography // Appl. Biochem. Microbiol. 2006. V. 42. P. 536.
  4. Кузнецов М.А., Нестеренко П.Н., Васияров Г.Г., Староверов С.М. Высокоэффективная жидкостная хроматография энантиомеров α-аминокислот на силикагеле с имообилизованным эремомицином // Журн. аналит. химии. 2008. Т. 63. № 1. С. 64. (Kuznetsov M.A., Nesterenko P.N., Vasiyarov G.G., and Staroverov S.M. High-performance liquid chromatography of α-amino acid enantiomers on eremomycinmodified silica // J. Anal. Chem. 2008. V. 63. № 1. P. 57.)
  5. Шаповалова Е.Н., Федорова И.А., Ананьева И.А., Шпигун О.А. Макроциклические антибиотики как хиральные селекторы в высокоэффективной жидкостной хроматографии и капиллярном электрофорезе // Журн. аналит. химии. 2018. Т. 73. № 11. С. 1. (Shapovalova E.N., Fedorova I.A., Ananieva I.A., Shpigun O.A. Macrocyclic antibiotics as chiral selectors in high-performance liquid chromatography and capillary electrophoresis // J. Anal. Chem. 2018. V. 73. № 11. P. 1.)
  6. Li Y., Zhu N., Chen T., Wei M., Ma Y. Stationary phase based on β-Cyclodextrin and poly(N-isopropylacrylamide) for HILIC and RPLC // Chromatographia. 2016. V. 79. P. 29.
  7. Guo Z., Jin Y., Liang T., Liu Y., Xu Q., Liang X., Lei A. Synthesis, chromatographic evaluation and hydrophilic interaction/reversed-phase mixed-mode behavior of a “Click β-cyclodextrin” stationary phase // J. Chromatogr. A. 2009. V. 1216. P. 257.
  8. Chikurova N.Yu., Shemiakina A.O., Shpigun O.A., Chernobrovkina A.V. Multicomponent Ugi reaction as a tool for fast and easy preparation of stationary phases for hydrophilic interaction liquid chromatography. Part I: The influence of attachment and spacing of the functional ligand obtained via the Ugi reaction // J. Chromatogr. A. 2022. V. 1666. Article 462804.
  9. Popov A.S., Spiridonov K.A., Uzhel A.S., Smolenkov A.D., Chernobrovkina A.V., Zatirakha A.V. Prospects of using hyperbranched stationary phase based on poly(styrene-divinylbenzene) in mixed-mode chromatography // J. Chromatogr. A. 2021. V. 1642. Article 462010.
  10. Zatirakha A.V., Smolenkov A.D., Pirogov A.V., Nesterenko P.N., Shpigun O.A. Preparation and characterization of anion exchangers with dihydroxy-containing alkyl substitutes in the quaternary ammonium functional groups // J. Chromatogr. A. 2014. V. 1323. P. 104.
  11. Uzhel A.S., Zatirakha A.V., Shchukina O.I., Smolenkov A.D., Shpigun O.A. Covalently-bonded hyperbranched poly(styrene-divinylbenzene)-based anion exchangers for ion chromatography // J. Chromatogr. A. 2016. V. 1470. P. 97.
  12. Uzhel A.S, Zatirakha A.V., Smirnov K.N., Smolenkov A.D., Shpigun O.A. Anion exchangers with negatively charged functionalities in hyperbranched ion-exchange layers for ion chromatography // J. Chromatogr. A. 2017. V. 1482. P. 56.
  13. Uzhel A.S., Gorbovskaya A.V., Zatirakha A.V., Smolenkov A.D., Shpigun O.A. Manipulating selectivity of covalently-bonded hyperbranched anion exchangers toward organic acids. Part I: Influence of primary amine substitutes in the internal part of the functional layer // J. Chromatogr. A. 2018. V. 1589. P. 65.
  14. Попов А.С. Дис. … канд. хим. наук. М.: МГУ им. М.В. Ломоносова, 2022. 175.
  15. Dolci M. Chromatographic Characterization of Stationary Phases for Hydrophilic Interaction Liquid Chromatography. Runcorn, Cheshire, UK: Thermo Fisher Scientific, 2013.
  16. Kawachi Y., Ikegami T., Takubo H., Ikegami Y., Miyamoto M., Tanaka N. Chromatographic characterization of hydrophilic interaction liquid chromatography sta-tionary phases: Hydrophilicity, charge effects, structural selectivity, and separation efficiency // J. Chro-matogr. A. 2011. V. 1218. P. 5903.
  17. Karatapanis A.E., Fiamegos Y.C., Stalikas C.D. HILIC separation and quantitation of water-soluble vitamins using diol column // J. Sep. Sci. 2009. V. 32. P. 909.
  18. Чернобровкина А.В., Смоленков А.Д., Шпигун О.А. Гидрофильная хроматография – перспективный метод определения полярных веществ // Лаборатория и производство. Т. 4. № 4. С. 76.
  19. Marrubini G., Pedrali A., Hemstrom P., Jonsson T., Massolini G. Column comparison and method development for the analysis of short-chain carboxylic acids by zwitterionic hydrophilic interaction liquid chromatography with UV detection // J. Sep. Sci. 2013. V. 36. P. 3493.
  20. Chen Y., Bicker W., Wu J., Xie M., Lindner W. Simultaneous determination of 16 nucleosides and nucleobases by hydrophilic interaction chromatography and its application to the quality evaluation of Ganoderma // J. Agric. Food Chem. 2012. V. 60. P. 4243.
  21. Tang T., Guo D., Huang S. Preparation and chromatographic evaluation of the hydrophilic interaction chromatography stationary phase based on nucleosides or nucleotides // Anal. Methods. 2021. V. 13. P. 419.

© Н.Ю. Чикурова, Д.С. Просунцова, А.Н. Ставрианиди, С.М. Староверов, И.А. Ананьева, А.Д. Смоленков, А.В. Чернобровкина, 2023

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».