THERMODYNAMIC MODELING OF THE COMPOSITION OF THE MAIN BACKGROUND IONS AND DETERMINATION OF THE GAS KINETIC TEMPERATURE IN A NORMAL (HOT) INDUCTIVELY COUPLED PLASMA
- Autores: Pupyshev A.A.1, Kel P.V.1,2, Burylin M.Y.3, Abakumov A.G.3, Abakumov P.G.3
-
Afiliações:
- Ural Federal University
- Institute of Metallurgy Ural Branch of Russian Academy of Sciences
- Kuban State University
- Edição: Volume 79, Nº 10 (2024)
- Páginas: 1110-1121
- Seção: ORIGINAL ARTICLES
- ##submission.dateSubmitted##: 17.02.2025
- URL: https://ogarev-online.ru/0044-4502/article/view/280411
- DOI: https://doi.org/10.31857/S0044450224100066
- EDN: https://elibrary.ru/TFJNNH
- ID: 280411
Citar
Resumo
Sobre autores
A. Pupyshev
Ural Federal University
Email: pupyshev@gmail.com
Department of Physical and Chemical Methods of Analysis, Institute of Physics and Technology Yekaterinburg, Russia
P. Kel
Ural Federal University; Institute of Metallurgy Ural Branch of Russian Academy of SciencesDepartment of Physical and Chemical Methods of Analysis, Institute of Physics and Technology Yekaterinburg, Russia; Yekaterinburg, Russia
M. Burylin
Kuban State UniversityAnalytical Chemistry Department, Faculty of Chemistry and High Technologies Krasnodar, Russia
A. Abakumov
Kuban State UniversityAnalytical Chemistry Department, Faculty of Chemistry and High Technologies Krasnodar, Russia
P. Abakumov
Kuban State UniversityAnalytical Chemistry Department, Faculty of Chemistry and High Technologies Krasnodar, Russia
Bibliografia
- Пупышев А.А., Эпова Е.Н. Спектральные помехи полиатомных ионов в методе массспектрометрии с индуктивно связанной плазмой // Аналитика и контроль. 2001. Т. 5. № 4. С. 335.
- May T.W., Wiedmeyer R.H. A table of polyatomic interferences in ICP-MS // At. Spectrosc. 1998. V. 19. № 5. P. 150. https://doi.org/10.46770/AS.1998.05.002
- Taylor H.E. Inductively Coupled Plasma MassSpectrometry. Practices and Techniques. Academic Press, 2001. 291 p.
- Пупышев А.А. Однозарядные аргидные ионы ArM+ в методе масс-спектрометрии с индуктивно связанной плазмой. Обзор // Журн. аналит. химии. 2023. Т. 78. № 9. С. 783. https://doi.org/10.31857/S0044450223090116
- Pupyshev A.A. Singly charged argide ArM+ ions in inductively coupled plasma–mass spectrometry // J. Anal. Chem. 1998. V. 53. № 9. P. 783. https://doi.org/10.1134/S1061934823090113
- Houk R.S., Praphairaksit Narong. Dissociation of polyatomic ions in the inductively coupled plasma // Spectrochim. Acta B: At. Spectrosc. 2001. V. 56. P. 1069. https://doi.org/10.1016/S0584-8547(01)00236-1
- Houk R.S., Svec H.J., Fassel V.A. Mass spectrometric evidence for suprathermal ionization in an inductively coupled argon plasma // Appl. Spectrosc. 1981. V. 35. № 6. Р. 380. https://doi.org/10.1366/000370281473
- Wilson D.A., Vickers G.H., Hieftj G.M. Ionization temperatures in the inductively coupled plasma determined by mass spectrometry // Appl. Spectrosc. 1987. V. 41. № 5. Р. 875. https://doi.org/10.1366/0003702874448139
- Houk R.S., Zhai Yan. Comparison of mass spectrometric and optical measurements of temperature and electron density in the inductively coupled plasma during mass spectrometric sampling // Spectrochim. Acta B: At. Spectrosc. 2001. V. 56. P. 1055. https://doi.org/10.1016/S0584-8547(01)00202-6
- Evans E.H, Ebdon L., Rowley L. Comparative study of the determination of equilibrium dissociation temperature in inductively coupled plasma-mass spectrometry // Spectrochim. Acta B: At. Spectrosc. 2002. V. 57. P. 741. https://doi.org/10.1016/S0584-8547(02)00003-4
- Longerich H.P. Mass spectrometric determination of the temperature of an argon inductively coupled plasma from the formation of the singly charged monoxide rare earths and their rnown dissociation energies // J. Anal. At. Spectrom. 1989. V. 4. P. 491. https://doi.org/10.1039/JA9890400491
- Nonose N.S., Matsuda N., Fudagawa N., Kubota M. Some characteristics of polyatomic ion spectra in inductively coupled plasma mass spectrometry // Spectrochim. Acta B: At. Spectrosc. 1994. V. 49. № 10. P. 955. https://doi.org/10.1016/0584-8547(94)80084-7
- Ebert C.H., Witte T.M., Houk R.S. Investigation into the behavior of metal-argon polyatomic ions (MAr+) in the extraction region of inductively coupled plasma-mass spectrometry // Spectrochim. Acta B: At. Spectrosc. 2012. V. 76. P. 119. https://doi.org/10.1016/j.sab.2012.06.046
- Tanner S.D. Characterization of ionization and matrix suppression in inductively coupled “cold” plasma mass spectrometry // J. Anal. At. Spectrom. 1995. V. 10. P. 905. https://doi.org/10.1039/JA9951000905
- Pupyshev A.A., Zaitceva P.V, Burylin M.Yu., Maltsev M.A., Morozov I.V, Osina E.L. Thermodynamic modeling of the composition of the main background ions in low-temperature (“cold”) inductively coupled plasma // J. Anal. Chem. 2024. V. 79. № 8. P 842.
- Huang Mao, Lehn S.A., Andrews E.J., Hieftje G.M. Comparison of electron concentrations, electron temperatures, gas kinetic temperatures, and excitation temperatures in argon ICPs operated at 27 and 40 MHz // Spectrochim. Acta B: At. Spectrosc. 1997. V. 52. P. 1173. https://doi.org/10.1016/S0584-8547(97)00007-4
- Tanner S.D., Paul M., Beres S.A., Denoyer E.R. The application of cold conditions for the determination of trace levels of Fe, Ca, K, Na, and Li by ICPMS // At. Spectrosc. 1995. V. 16. № 1. P. 16.
- Трусов Б.Г. TERRA. Программа термодинамического расчета состава фаз произвольных гетерогенных систем, а также их термодинамических и транспортных свойств. М.: МВТУ им. Н.Э. Баумана, 2005.
- Белов Г.В., Трусов Б.Г. Термодинамическое моделирование химически реагирующих систем. М.: МГТУ им. Н.Э. Баумана, 2013. 96 с.
- Belov G.V., Iorish V.S., Yungman V.S. IVTANTHERMO for Windows — Database on thermodynamic properties and related software // Calphad. 1999. V. 23. № 2. P. 173. https://doi.org/10.1016/S0364-5916(99)00023-1
- Мальцев М.А., Морозов И.В., Осина Е.Л. Термодинамические свойства димеров аргона Ar+2 и Ar2 // Теплофизика высоких температур. 2019. Т. 57. № 1. С. 42. https://doi.org/10.1134/S0040364419010174
- Maltsev A., Morozov I.V., Osina E.L. Thermodynamic properties of Ar+2 and Ar2 argon dimers // High Temp. 2019. V. 57. № 1. P. 37. https://doi.org/10.1134/S0018151X19010176
- Мальцев М.А., Морозов И.В., Осина Е.Л. Термодинамические свойства ArH+ и ArH // Tеплофизика высоких температур. 2019. Т. 57. № 3. С. 367. https://doi.org/10.1134/S0040364419020121
- Maltsev M.A, Morozov I.V., Osina E.L. Thermodynamic Properties of ArH+ and ArH // High Temp. 2019. V. 57. № 3. P. 335. https://doi.org/10.1134/S0018151X19020123
- Мальцев М.А., Морозов И.В., Осина Е.Л. Термодинамические функции ArO и ArO+ // Теплофизика высоких температур. 2020. Т. 58. № 2. С. 202. https://doi.org/10.31857/S0040364420020131
- Maltsev A., Morozov I.V., Osina E.L. Thermodynamic functions of ArO and ArO+ // High Temp. 2020. V. 58. № 2. P. 184. https://doi.org/10.1134/S0018151X20020133
- Maltcev M.A., Aksenova S.A., Morozov I.V., Minenkov Y., Osina E.L. Ab initio calculations of the interaction potentials and thermodynamic functions for ArN and ArN+ // J. Comput. Chem. 2023. V. 44. № 12. P. 1189. https://doi.org/10.1002/jcc.27078
- Пупышев А.А., Суриков В.Т. Массспектрометрия с индуктивно связанной плазмой. Образование ионов. Екатеринбург: УрО РАН, 2006. 276 с.
- HSC Chemistry® 6.0. Chemical Reaction and Equilibrium Software with Extensive Thermochemical Database and Flowsheet Simulation. Outokumpy research, Finland. 2006.
- HSC Chemistry 8.0. Outokumpy research. Finland, 2014.
- NIST-JANAF Thermochemical Tables. 4th Ed. / J. Phys. Chem. Ref. Data. Monograph № 9 / Ed. Chase M.V. USA: American Chemical Society and the American Institute of Physics, 1998. 1961 p.
Arquivos suplementares
