THERMODYNAMIC MODELING OF THE COMPOSITION OF THE MAIN BACKGROUND IONS AND DETERMINATION OF THE GAS KINETIC TEMPERATURE IN A NORMAL (HOT) INDUCTIVELY COUPLED PLASMA

Мұқаба

Дәйексөз келтіру

Толық мәтін

Ашық рұқсат Ашық рұқсат
Рұқсат жабық Рұқсат берілді
Рұқсат жабық Тек жазылушылар үшін

Аннотация

The possibility of studying the manifestation of the main background ions formed by the main elements of inductively coupled plasma (H, N, O and Ar) by the method of thermodynamic modeling underthe operating parameters of the normal (“hot”) plasma regime is considered. Such ions, which create thestrongest spectral interference in the mass spectra, are always observed when introducing aqueous (“wet”)sample solutions into inductively coupled plasma (ICP-MS) mass spectrometers. The quantitative composition of the main background ions in ICP-MS, depending on the plasma temperature, was calculated using thermodynamic modeling in the temperature range from 3000 to 8000 K. It is compared with experimentaldata from measurements of the mass spectra of the main background ions and a high degree of correlation between theoretical and experimental results is shown. The coincidence of calculations and experiments confirms the correctness of the thermodynamic model of thermochemical processes used in ICP-MS andits applicability for subsequent calculations in solving analytical problems. By comparing the theoreticaland experimental mass spectra of the main background ions of the ICP in the normal mode, the possibilityof an unambiguous assessment of the gas kinetic temperature of the plasma was confirmed. It was foundthat the calculated and experimental data on concentrations only for NO+ ions do not coincide with thepatterns noted for other background ions in the normal ICP mode.

Авторлар туралы

A. Pupyshev

Ural Federal University

Email: pupyshev@gmail.com
Department of Physical and Chemical Methods of Analysis, Institute of Physics and Technology Yekaterinburg, Russia

P. Kel

Ural Federal University; Institute of Metallurgy Ural Branch of Russian Academy of Sciences

Department of Physical and Chemical Methods of Analysis, Institute of Physics and Technology Yekaterinburg, Russia; Yekaterinburg, Russia

M. Burylin

Kuban State University

Analytical Chemistry Department, Faculty of Chemistry and High Technologies Krasnodar, Russia

A. Abakumov

Kuban State University

Analytical Chemistry Department, Faculty of Chemistry and High Technologies Krasnodar, Russia

P. Abakumov

Kuban State University

Analytical Chemistry Department, Faculty of Chemistry and High Technologies Krasnodar, Russia

Әдебиет тізімі

  1. Пупышев А.А., Эпова Е.Н. Спектральные помехи полиатомных ионов в методе массспектрометрии с индуктивно связанной плазмой // Аналитика и контроль. 2001. Т. 5. № 4. С. 335.
  2. May T.W., Wiedmeyer R.H. A table of polyatomic interferences in ICP-MS // At. Spectrosc. 1998. V. 19. № 5. P. 150. https://doi.org/10.46770/AS.1998.05.002
  3. Taylor H.E. Inductively Coupled Plasma MassSpectrometry. Practices and Techniques. Academic Press, 2001. 291 p.
  4. Пупышев А.А. Однозарядные аргидные ионы ArM+ в методе масс-спектрометрии с индуктивно связанной плазмой. Обзор // Журн. аналит. химии. 2023. Т. 78. № 9. С. 783. https://doi.org/10.31857/S0044450223090116
  5. Pupyshev A.A. Singly charged argide ArM+ ions in inductively coupled plasma–mass spectrometry // J. Anal. Chem. 1998. V. 53. № 9. P. 783. https://doi.org/10.1134/S1061934823090113
  6. Houk R.S., Praphairaksit Narong. Dissociation of polyatomic ions in the inductively coupled plasma // Spectrochim. Acta B: At. Spectrosc. 2001. V. 56. P. 1069. https://doi.org/10.1016/S0584-8547(01)00236-1
  7. Houk R.S., Svec H.J., Fassel V.A. Mass spectrometric evidence for suprathermal ionization in an inductively coupled argon plasma // Appl. Spectrosc. 1981. V. 35. № 6. Р. 380. https://doi.org/10.1366/000370281473
  8. Wilson D.A., Vickers G.H., Hieftj G.M. Ionization temperatures in the inductively coupled plasma determined by mass spectrometry // Appl. Spectrosc. 1987. V. 41. № 5. Р. 875. https://doi.org/10.1366/0003702874448139
  9. Houk R.S., Zhai Yan. Comparison of mass spectrometric and optical measurements of temperature and electron density in the inductively coupled plasma during mass spectrometric sampling // Spectrochim. Acta B: At. Spectrosc. 2001. V. 56. P. 1055. https://doi.org/10.1016/S0584-8547(01)00202-6
  10. Evans E.H, Ebdon L., Rowley L. Comparative study of the determination of equilibrium dissociation temperature in inductively coupled plasma-mass spectrometry // Spectrochim. Acta B: At. Spectrosc. 2002. V. 57. P. 741. https://doi.org/10.1016/S0584-8547(02)00003-4
  11. Longerich H.P. Mass spectrometric determination of the temperature of an argon inductively coupled plasma from the formation of the singly charged monoxide rare earths and their rnown dissociation energies // J. Anal. At. Spectrom. 1989. V. 4. P. 491. https://doi.org/10.1039/JA9890400491
  12. Nonose N.S., Matsuda N., Fudagawa N., Kubota M. Some characteristics of polyatomic ion spectra in inductively coupled plasma mass spectrometry // Spectrochim. Acta B: At. Spectrosc. 1994. V. 49. № 10. P. 955. https://doi.org/10.1016/0584-8547(94)80084-7
  13. Ebert C.H., Witte T.M., Houk R.S. Investigation into the behavior of metal-argon polyatomic ions (MAr+) in the extraction region of inductively coupled plasma-mass spectrometry // Spectrochim. Acta B: At. Spectrosc. 2012. V. 76. P. 119. https://doi.org/10.1016/j.sab.2012.06.046
  14. Tanner S.D. Characterization of ionization and matrix suppression in inductively coupled “cold” plasma mass spectrometry // J. Anal. At. Spectrom. 1995. V. 10. P. 905. https://doi.org/10.1039/JA9951000905
  15. Pupyshev A.A., Zaitceva P.V, Burylin M.Yu., Maltsev M.A., Morozov I.V, Osina E.L. Thermodynamic modeling of the composition of the main background ions in low-temperature (“cold”) inductively coupled plasma // J. Anal. Chem. 2024. V. 79. № 8. P 842.
  16. Huang Mao, Lehn S.A., Andrews E.J., Hieftje G.M. Comparison of electron concentrations, electron temperatures, gas kinetic temperatures, and excitation temperatures in argon ICPs operated at 27 and 40 MHz // Spectrochim. Acta B: At. Spectrosc. 1997. V. 52. P. 1173. https://doi.org/10.1016/S0584-8547(97)00007-4
  17. Tanner S.D., Paul M., Beres S.A., Denoyer E.R. The application of cold conditions for the determination of trace levels of Fe, Ca, K, Na, and Li by ICPMS // At. Spectrosc. 1995. V. 16. № 1. P. 16.
  18. Трусов Б.Г. TERRA. Программа термодинамического расчета состава фаз произвольных гетерогенных систем, а также их термодинамических и транспортных свойств. М.: МВТУ им. Н.Э. Баумана, 2005.
  19. Белов Г.В., Трусов Б.Г. Термодинамическое моделирование химически реагирующих систем. М.: МГТУ им. Н.Э. Баумана, 2013. 96 с.
  20. Belov G.V., Iorish V.S., Yungman V.S. IVTANTHERMO for Windows — Database on thermodynamic properties and related software // Calphad. 1999. V. 23. № 2. P. 173. https://doi.org/10.1016/S0364-5916(99)00023-1
  21. Мальцев М.А., Морозов И.В., Осина Е.Л. Термодинамические свойства димеров аргона Ar+2 и Ar2 // Теплофизика высоких температур. 2019. Т. 57. № 1. С. 42. https://doi.org/10.1134/S0040364419010174
  22. Maltsev A., Morozov I.V., Osina E.L. Thermodynamic properties of Ar+2 and Ar2 argon dimers // High Temp. 2019. V. 57. № 1. P. 37. https://doi.org/10.1134/S0018151X19010176
  23. Мальцев М.А., Морозов И.В., Осина Е.Л. Термодинамические свойства ArH+ и ArH // Tеплофизика высоких температур. 2019. Т. 57. № 3. С. 367. https://doi.org/10.1134/S0040364419020121
  24. Maltsev M.A, Morozov I.V., Osina E.L. Thermodynamic Properties of ArH+ and ArH // High Temp. 2019. V. 57. № 3. P. 335. https://doi.org/10.1134/S0018151X19020123
  25. Мальцев М.А., Морозов И.В., Осина Е.Л. Термодинамические функции ArO и ArO+ // Теплофизика высоких температур. 2020. Т. 58. № 2. С. 202. https://doi.org/10.31857/S0040364420020131
  26. Maltsev A., Morozov I.V., Osina E.L. Thermodynamic functions of ArO and ArO+ // High Temp. 2020. V. 58. № 2. P. 184. https://doi.org/10.1134/S0018151X20020133
  27. Maltcev M.A., Aksenova S.A., Morozov I.V., Minenkov Y., Osina E.L. Ab initio calculations of the interaction potentials and thermodynamic functions for ArN and ArN+ // J. Comput. Chem. 2023. V. 44. № 12. P. 1189. https://doi.org/10.1002/jcc.27078
  28. Пупышев А.А., Суриков В.Т. Массспектрометрия с индуктивно связанной плазмой. Образование ионов. Екатеринбург: УрО РАН, 2006. 276 с.
  29. HSC Chemistry® 6.0. Chemical Reaction and Equilibrium Software with Extensive Thermochemical Database and Flowsheet Simulation. Outokumpy research, Finland. 2006.
  30. HSC Chemistry 8.0. Outokumpy research. Finland, 2014.
  31. NIST-JANAF Thermochemical Tables. 4th Ed. / J. Phys. Chem. Ref. Data. Monograph № 9 / Ed. Chase M.V. USA: American Chemical Society and the American Institute of Physics, 1998. 1961 p.

Қосымша файлдар

Қосымша файлдар
Әрекет
1. JATS XML

© Russian Academy of Sciences, 2024

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».