MONITORING OF THE POPULATIONS OF THE KAMCHATKAN ANADROMOUS RAINBOW TROUT PARASALMO MYKISS (SALMONIDAE), THE RUSSIAN RED LIST SPECIES, IN THE RIVERS OF THE NORTH-WESTERN KAMCHATKA. I. THE DYNAMICS OF THE GENETIC TRAITS’ VARIABILITY

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The state of populations of the anadromous Kamchatka rainbow trout Parasalmo mykiss, the threatened species included into the Russian Red List, have been studied in two rivers in the north-western Kamchatka (Utkholok River and Kvachina River) over a period of more than 25 years. Variability of six microsatellite loci was analyzed: Ssa197, Ssa20.19, One103, One112, Oki10, and Ots3; the POWSIM analysis demonstrated high resolution of the above loci. Genetic diversity indices of the rainbow trout in neighboring rivers are similar and do not differ significantly, but the variability of its average estimates is greater in the larger Utkholok River. Temporal changes in the genetic diversity estimates in different age groups of rainbow trout were also statistically insignificant; in the recent past, these populations of rainbow trout did not experience the bottleneck event. The genetic structure of anadromous rainbow trout in each river is quite stable for more than a quarter of a century (approximately, four to five generations), indicating a fairly high level of genetic exchange between the populations inhabiting the studied streams. No signs of reduction in genetic diversity have been found at microsatellite loci; this reflects their stable state over a long recent period. The analysis of long-term series of genetic traits allows to consider the studied populations of the rainbow trout as a unique unit for biodiversity conservation of the species included into the Red List of the Russian Federation. We suggest to assign them as a “reference cluster of populations of particular importance” and to develop a specialized system of measures aimed at their conservation.

About the authors

K. V. Kuzishchin

Lomonosov Moscow State University; Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences

Email: KK_office@mail.ru
Moscow, Russia; Moscow, Russia

A. V. Semenova

Lomonosov Moscow State University; Vavilov Institute of General Genetics, Russian Academy of Sciences

Moscow, Russia; Moscow, Russia

M. A. Gruzdeva

Lomonosov Moscow State University

Moscow, Russia

References

  1. Борисенко Э.С., Павлов Д.С., Кузищин К.В. 2022. Гидроакустические исследования анадромной миграции микижи Parasalmo mykiss (Salmonidae) реки Квачина (Западная Камчатка) // Вопр. ихтиологии. Т. 62. № 6. С. 770–780. https://doi.org/10.31857/S0042875222060054
  2. Кузищин К.В. 2010. Формирование и адаптивное значение внутривидового экологического разнообразия лососёвых рыб (семейство Salmonidae): Автореф. дис. ... докт. биол. наук. М.: МГУ, 49 с.
  3. Кузищин К.В., Савваитова К.А., Груздева М.А. 1999. Структура чешуи как критерий дифференциации локальных популяций микижи Parasalmo mykiss из рек Западной Камчатки и Северной Америки // Вопр. ихтиологии. Т. 39. № 6. С. 809–818.
  4. Кузищин К.В., Груздева М.А., Павлов Д.С. 2013. Основные результаты долговременного мониторинга популяций проходной микижи Parasalmo mykiss (Walbaum) из реки Квачина (Северо-Западная Камчатка) // Тез. докл. ХIV Междунар. науч. конф. “Сохранение биоразнообразия Камчатки и прилегающих морей”. Петропавловск-Камчатский: Камчатпресс. С. 86–90.
  5. Кузищин К.В., Груздева М.А., Семёнова А.В. и др. 2017. Динамика структуры популяций микижи Parasalmo mykiss (Walbaum) из рек Северо-Западной Камчатки как показатель состояния вида Красной книги России // Матер. XVIII Междунар. науч. конф. “Сохранение биоразнообразия Камчатки и прилегающих морей”. Петропавловск-Камчатский: Камчатпресс. С. 102–106.
  6. Кузищин К.В., Груздева М.А., Семёнова А.В., Павлов Д.С. 2020а. Яровой экотип проходной микижи Parasalmo (Oncorhynchus) mykiss (Walbaum, 1792) (Salmonidae, Salmoniformes) на Камчатке // Биология моря. Т. 46. № 6. С. 384–391. https://doi.org/10.31857/S013434752006008X
  7. Кузищин К.В., Семёнова А.В., Груздева М.А., Павлов Д.С. 2020б. Закономерности формирования разнообразия жизненных стратегий и генетическая изменчивость камчатской микижи Parasalmo mykiss в локальной популяции // Вопр. ихтиологии. Т. 60. № 6. С. 636–654. https://doi.org/10.31857/S004287522006003X
  8. Кузищин К.В., Груздева М.А., Семенова А.В. 2023. О расширении зоны гибридизации гольцов рода Salvelinus — кунджи S. leucomaenis и северной мальмы S. malma (Salmonidae) — в реках Камчатского полуострова // Вопр. ихтиологии. Т. 63. № 6. С. 704–722. https://doi.org/10.31857/S0042875223060140
  9. Мельникова М.Н., Павлов С.Д., Колесников А.А., Петров Н.Б. 2010. Поиск и конструирование популяционно-генетических SCAR-маркеров для камчатской микижи Parasalmo (Oncorhynchus) mykiss // Генетика. Т. 46. № 6. С. 792–797.
  10. Мельникова М.Н., Павлов С.Д., Шитова М.В. 2014a. Применимость SCAR-маркеров ДНК для дифференциации камчатской микижи (Parasalmo (Oncorhynchus) mykiss) // Докл. РАН. T. 455. № 6. C. 727–730. https://doi.org/10.7868/S086956521412024X
  11. Мельникова М.Н., Сенчукова А.Л., Павлов С.Д. 2014б. Применение ISSR-маркёров для камчатских популяций микижи Parasalmo (Oncorhynchus) mykiss (Walbaum) (Salmonidae, Salmoniformes) // Докл. РАН. Т. 459. № 6. С. 754–758. https://doi.org/10.7868/S0869565214360249
  12. Осинов А.Г., Павлов С.Д. 1993. О генетическом сходстве камчатских благородных лососей и американской радужной форели // Вопр. ихтиологии. Т. 33. № 5. С. 626–630.
  13. Павлов Д.С., Кузищин К.В. 2021. Микижа (проходная форма = камчатская сёмга) // Красная книга Российской Федерации. Животные. М.: Изд-во ВНИИ Экология. С. 334–336.
  14. Павлов Д.С., Савваитова К.А., Кузищин К.В. 1999. К проблеме формирования эпигенетических вариаций жизненной стратегии у вида Красной книги — камчатской микижи Parasalmo mykiss (Salmonidae, Salmoniformes) // Докл. АН. Т. 367. № 5. С. 709–713.
  15. Павлов Д.С., Савваитова К.А., Кузищин К.В. 2000. О карликовых самцах и репродуктивной тактике у камчатской микижи Parasalmo mykiss (Walbaum) (Salmonidae, Salmoniformes) // Докл. РАН. Т. 373. № 1. С. 135–138.
  16. Павлов Д.С., Савваитова К.А., Кузищин К.В. и др. 2001. Тихоокеанские благородные лососи и форели Азии. М.: Науч. мир, 200 с.
  17. Павлов Д.С., Савваитова К.А., Кузищин К.В. и др. 2007. Стратегия сохранения камчатской микижи. М.: Изд-во ИПЭЭ РАН, 32 с.
  18. Павлов Д.С., Савваитова К.А., Кузищин К.В. и др. 2008. Разнообразие жизненных стратегий и структура популяций камчатской микижи Parasalmo mykiss в экосистемах малых лососёвых рек разного типа // Вопр. ихтиологии. Т. 48. № 1. С. 42–49.
  19. Павлов Д.С., Савваитова К.А., Кузищин К.В. и др. 2009. Состояние и мониторинг биоразнообразия лососёвых рыб и среды их обитания на Камчатке (на примере территории заказника “Река Коль”). М.: Т-во науч. изд. КМК, 156 с.
  20. Павлов Д.С., Кириллов П.И., Кириллова Е.А. и др. 2016. Состояние и мониторинг биоразнообразия рыб, рыбообразных и среды их обитания в бассейне реки Утхолок. М.: Т-во науч. изд. КМК, 197 c.
  21. Павлов С.Д. 2000. Аллозимная изменчивость и генетическая дивергенция тихоокеанских форелей (род Parasalmo) Западной Камчатки // Генетика. Т. 36. № 9. С. 1251–1261.
  22. Павлов С.Д., Колесников А.А., Мельникова М.Н., Ушакова М.В. 2004. Генетическая дивергенция камчатской микижи (Parasalmo (Oncorhynchus) mykiss) на ареале по результатам рестрикционного анализа и секвенирования гена цитохрома b мтДНК // Генетка. Т. 40. № 12. С. 1695–1701.
  23. Павлов С.Д., Семенова А.В., Рубцова Г.А., Афанасьев К.И. 2011. Анализ изменчивости микросателлитных локусов у камчатской микижи (Parasalmo (Oncorhynchus) mykiss) // Генетика. Т. 47. № 10. С. 1346–1356.
  24. Павлов С.Д., Семенова А.В., Мельникова М.Н. 2019. Дифференциация камчатских популяций микижи Parasalmo (Oncorhynchus) mykiss по локусам микросателлитной ДНК // Изв. РАН. Сер. биол. № 2. С. 144–153. https://doi.org/10.1134/S0002332919020127
  25. Савваитова К.А., Лебедев В.Д. 1966. О систематическом положении камчатской семги (Salmo penshinensis Pallas) и микижи (Salmo mykiss Walbaum) и их взаимоотношения с американскими представителями рода Salmo // Вопр. ихтиологии. Т. 6. Вып. 4 (41). С. 593–608.
  26. Савваитова К.А., Максимов В.А., Мина М.В. и др. 1973. Камчатские благородные лососи (систематика, экология, перспективы использования как объекта форелеводства и акклиматизации). Воронеж: Изд-во ВГУ, 120 с.
  27. Савваитова К.А., Кузищин К.В., Максимов С.В., Павлов С.Д. 1997. Популяционная структура микижи реки Утхолок (Западная Камчатка) // Вопр. ихтиологии. Т. 37. № 2. С. 179–188.
  28. Савваитова К.А., Тутуков М.А., Кузищин К.В., Павлов Д.С. 2002. Изменения структуры популяции камчатской микижи Parasalmo mykiss из реки Утхолок на фоне колебаний ее численности // Вопр. ихтиологии. Т. 42. № 2. С. 184–188.
  29. Савваитова К.А., Кузищин К.В., Груздева М.А. и др. 2003. Долгосрочные и краткосрочные изменения структуры популяций камчатской микижи Parasalmo mykiss из рек Западной Камчатки // Вопр. ихтиологии. Т. 43. № 6. С. 789–800.
  30. Семенова А.В., Рубцова Г.А., Афанасьев К.И., Павлов С.Д. 2010. Анализ микросателлитной ДНК у камчатской микижи (Parasalmo (Oncorhynchus) mykiss). Подбор локусов и оптимизация методики // Генетика. Т. 46. № 7. С. 1004–1008.
  31. Abadía-Cardoso A., Pearse D.E., Jacobson S. et al. 2016. Population genetic structure and ancestry of steelhead/rainbow trout (Oncorhynchus mykiss) at the extreme southern edge of their range in North America // Conserv. Genet. V. 17. № 3. P. 675–689. https://doi.org/10.1007/s10592-016-0814-9
  32. Aguilar A., Garza J.C. 2006. A comparison of variability and population structure for major histocompatibility complex and microsatellite loci in California coastal steelhead (Oncorhynchus mykiss Walbaum) // Mol. Ecol. V. 15. № 4. P. 923–937. https://doi.org/10.1111/j.1365-294X.2006.02843.x
  33. Aguilar A., Garza J.C. 2007. Patterns of historical balancing selection on the salmonid major histocompatibility complex class II β gene // J. Mol. Evol. V. 65. № 1. P. 34–43. https://doi.org/10.1007/s00239-006-0222-8
  34. Aguilar A., Roemer G., Debenham S. et al. 2004. High MHC diversity maintained by balancing selection in an otherwise genetically monomorphic mammal // P. Natl. Acad. Sci. USA. V. 101. № 10. P. 3490–3494. https://doi.org/10.1073/pnas.0306582101
  35. Araki H., Cooper B., Blouin M.S. 2007. Genetic effects of captive breeding cause a rapid, cumulative fitness decline in the wild // Science. V. 318. № 5847. P. 100–103. https://doi.org/10.1126/science.1145621
  36. Araki H., Berejikian B.A., Ford M.J., Blouin M.S. 2008. Fitness of hatchery-reared salmonids in the wild // Evol. Appl. V. 1. № 2. P. 342–355. https://doi.org/10.1111/j.1752-4571.2008.00026.x
  37. Ardren W.R., Kapuscinski A.R. 2003. Demographic and genetic estimates of effective population size (Ne) reveals genetic compensation in steelhead trout // Mol. Ecol. V. 12. № 1. P. 35–49. https://doi.org/10.1046/j.1365-294X.2003.01705.x
  38. Arthington A.H., Dulvy N.K., Gladstone W., Winfield I.J. 2016. Fish conservation in freshwater and marine realms: status, threats and management // Aquat. Conserv. Mar. Freshw. Ecosyst. V. 26. № 5. P. 838–857. https://doi.org/10.1002/aqc.2712
  39. Bartley D., Bagley M., Gall G., Bentley B. 1992. Use of linkage disequilibrium data to estimate effective size of hatchery and natural fish populations // Conserv. Biol. V. 6. № 3. P. 365–375. https://doi.org/10.1046/j.1523-1739.1992.06030365.x
  40. Bartholomew A., Bohnsack J.A. 2005. A Review of catch-and-release angling mortality with implications for no-take reserves // Rev. Fish Biol. Fish. V. 15. № 1. P. 129–154. https://doi.org/10.1007/s11160-005-2175-1
  41. Barton N., Slatkin M.A. 1986. Quasi-equilibrium theory of the distribution of rare alleles in a subdivided population // Heredity. V. 56. № 3. P. 409–415. https://doi.org/10.1038/hdy.1986.63
  42. Beacham T.D., Pollard S., Le K.D. 1999. Population structure and stock identification of steelhead in southern British Columbia, Washington, and the Columbia River based on microsatellite DNA variation // Trans. Am. Fish. Soc. V. 128. № 6. P. 1068–1084. https://doi.org/10.1577/1548-8659(1999)128<1068:PSASIO>2.0.CO;2
  43. Beacham T.D., Pollard S., Le K.D. 2000. Microsatellite DNA population structure and stock identification of steelhead trout (Oncorhynchus mykiss) in the Nass and Skeena rivers in northern British Columbia // Mar. Biotechnol. V. 2. № 6. P. 587–600. https://doi.org/10.1007/s101260000045
  44. Beacham T.D., Le K.D., Candy J.R. 2004. Population structure and stock identification of steelhead trout (Oncorhynchus mykiss) in British Columbia and the Columbia River based on microsatellite variation // Environ. Biol. Fish. V. 69. № 1. P. 95–109. https://doi.org/10.1023/B:EBFI.0000022902.20436.b8
  45. Beacham T.D., Wallace C.G., Le K.D., Beere M. 2012. Population structure and run timing of steelhead in the Skeena River, British Columbia // N. Am. J. Fish. Manage. V. 32. № 2. P. 262–275. https://doi.org/10.1080/02755947.2012.675953
  46. Behnke R.J. 1966. Relationships of the Far Eastern trout Salmo mykiss Walbaum // Copeia. V. 1966. № 2. P. 346–348. https://doi.org/10.2307/1441145
  47. Behnke R.J. 1992. Native trout of Western North America // Am. Fish. Soc. Monogr. V. 6. 275 p.
  48. Behnke R.J. 2002. Trout and salmon of North America. N.Y.: Free Press; Simon and Schuster Inc., 360 p.
  49. Benavente J.N., Seeb L.W., Seeb J.E. et al. 2015. Temporal genetic variance and propagule-driven genetic structure characterize naturalized rainbow trout (Oncorhynchus mykiss) from a Patagonian Lake impacted by trout farming // PLOS ONE. V. 10. № 11. Article e0142040. https://doi.org/10.1371/journal.pone.0142040
  50. Blankenship S.M., Small M.P., Bumgarner J.D. 2009. Temporal stability of genetic variation within natural populations of summer steelhead receiving mitigation hatchery fish // Trans. Am. Fish. Soc. V. 138. № 5. P. 1052–1064. https://doi.org/10.1577/T08-165.1
  51. Blankenship S.M., Campbell M.R., Hess J.E. et al. 2011. Major lineages and metapopulations in Columbia River Oncorhynchus mykiss are structured by dynamic landscape features and environments // Trans. Am. Fish. Soc. V. 140. № 3. P. 665–684. https://doi.org/10.1080/00028487.2011.584487
  52. Blumm M.C. 2002. Sacrificing the salmon: a legal and policy history of the decline of Columbia Basin salmon. Den Bosch: Book World Publ., 425 p.
  53. Brannon E.L., Powell M.S., Quinn T.P., Talbot A. 2004. Population structure of Columbia River basin chinook salmon and steelhead trout // Rev. Fish. Sci. V. 12. № 2–3. P. 99–232. https://doi.org/10.1080/10641260490280313
  54. Busby P.J., Wainwright T.C., Bryant G.J. 2000. Status review of steelhead from Washington, Idaho, Oregon and California // Sustainable fisheries management: Pacific salmon. Boca Raton: CRC Press. P. 119–132. https://doi.org/10.1201/9780429104411-13
  55. Butler V.L., O’Connor J.E. 2004. 9000 years of salmon fishing on the Columbia River, North America // Quaternary Res. V. 62. № 1. P. 1–8. https://doi.org/10.1016/j.yqres.2004.03.002
  56. Campbell M.R., Kozfkay C.C., Copeland T. et al. 2012. Estimating abundance and life history characteristics of threatened wild Snake River steelhead stocks by using genetic stock identification // Trans. Am. Fish. Soc. V. 141. № 5. P. 1310–1327. https://doi.org/10.1080/00028487.2012.690816
  57. Carim K.J., Eby L.A., Barfoot C.A., Boyer M.C. 2016. Consistent loss of genetic diversity in isolated cutthroat trout populations independent of habitat size and quality // Conserv. Genet. V. 17. № 6. P. 1363–1376. https://doi.org/10.1007/s10592-016-0867-9
  58. Carlson S.M., Seamons T.R. 2008. A review of quantitative genetic components of fitness in salmonids: implications for adaptation to future change // Evol. Appl. V. 1. № 2. P. 222–238. https://doi.org/10.1111/j.1752-4571.2008.00025.x
  59. Caroffino D.C., Miller L.M., Kapuscinski A.R., Ostazeski J.J. 2008. Stocking success of local-origin fry and impact of hatchery ancestry: monitoring a new steelhead (Oncorhynchus mykiss) stocking program in a Minnesota tributary to Lake Superior // Can. J. Fish. Aquat. Sci. V. 65. № 2. P. 309–318. https://doi.org/10.1139/f07-167
  60. Casselman S.J. 2005. Catch-and-release angling: a review with guidelines for proper fish handling practices. Peterborough, Ontario: Fish and Wildlife Branch. Ontario Ministry of Natural Resources, 26 p.
  61. Chapman D.W. 1986. Salmon and steelhead abundance in the Columbia River in the nineteenth century // Trans. Am. Fish. Soc. V. 115. № 5. P. 662–670. https://doi.org/10.1577/1548-8659(1986)115<662:sasait>2.0.co;2
  62. Chilcote M.W., Crawford B.A., Leider S.A. 1980. A genetic comparison of sympatric populations of summer and winter steelheads // Trans. Am. Fish. Soc. V. 109. № 2. P. 203–206. https://doi.org/10.1577/1548-8659(1980)109<203:AGCOSP>2.0.CO;2
  63. Chilcote M.W., Leider S.A., Loch J.J. 1986. Differential reproductive success of hatchery and wild summer-run steelhead under natural conditions // Trans. Am. Fish. Soc. V. 115. № 5. P. 726–735. https://doi.org/10.1577/1548-8659(1986)115<726:DRSOHA>2.0.CO;2
  64. Collins E.E., Hargrove J.S., Delomas T.A., Narum S.R. 2020. Distribution of genetic variation underlying adult migration timing in steelhead of the Columbia River basin // Ecol. Evol. V. 10. № 17. P. 9486–9502. https://doi.org/10.1002/ece3.6641
  65. Collins E.E., Hess J.E., Bechtol S. et al. 2023. Genetic monitoring of steelhead in the Klickitat River to estimate productivity, straying, and migration timing // N. Am. J. Fish. Manage. V. 43. № 4. P. 1000–1016. https://doi.org/10.1002/nafm.10921
  66. Conservation genetics: case histories from nature. 1996. N.Y.: Chapman and Hall, 512 p.
  67. Cooke S.J., Paukert C., Hogan Z. 2012. Endangered river fish: factors hindering conservation and restoration // Endanger. Species Res. V. 17. P. 179–191. https://doi.org/10.3354/esr00426
  68. Courter I.I., Chance T., Gerstenberger R. et al. 2022. Hatchery propagation did not reduce natural steelhead productivity relative to habitat conditions and predation in a mid-Columbia River subbasin // Can. J. Fish. Aquat. Sci. V. 79. № 11. P. 1879–1895. https://doi.org/10.1139/cjfas-2021-0351
  69. Cowx I.G., Portocarrero Aya M. 2011. Paradigm shifts in fish conservation: moving to the ecosystem services concept // J. Fish Biol. V. 79. № 6. P. 1663–1680. https://doi.org/10.1111/j.1095-8649.2011.03144.x
  70. Crespi B.J., Teo R. 2002. Comparative phylogenetic analysis of the evolution of semelparity and life history in salmonid fishes // Evolution. V. 56. № 5. P. 1008–1020. https://doi.org/10.1111/j.0014-3820.2002.tb01412.x
  71. Crow J.F., Kimura M. 1970. An introduction to population genetics theory. N.Y.: Harper and Row, 591 p.
  72. Crow J.F., Kimura M. 1972. The effective number of a population with overlapping generations: a correction and further discussion // Am. J. Hum. Genet. V. 24. № 1. P. 1–10.
  73. Crow J.F., Kimura M. 1979. Efficiency of truncation selection // P. Natl. Acad. Sci. USA. V. 76. № 1. P. 396–399. https://doi.org/10.1073/pnas.76.1.396
  74. Crozier L.G., McClure M.M., Beechie T. et al. 2019. Climate vulnerability assessment for Pacific salmon and steelhead in the California Current Large Marine Ecosystem // PLoS One. V. 14. № 7. Article e0217711. https://doi.org/10.1371/journal.pone.0217711
  75. Darwall W.R.T., Freyhof J. 2015. Lost fishes, who is counting? The extent of the threat to freshwater fish biodiversity // Conservation of freshwater fishes. Cambridge: Cambridge Univ. Press. P. 1–36. https://doi.org/10.1017/CBO9781139627085.002
  76. Del Real S.C., Workman M., Merz J. 2012. Migration characteristics of hatchery and natural-origin Oncorhynchus mykiss from the lower Mokelumne River, California // Environ. Biol. Fish. V. 94. № 2. P. 363–375. https://doi.org/10.1007/s10641-011-9967-z
  77. DiBattista J.D. 2008. Patterns of genetic variation in anthropogenically impacted populations // Conserv. Genet. V. 9. № 1. P. 141–156. https://doi.org/10.1007/s10592-007-9317-z
  78. Do C., Waples R.S., Peel D. et al. 2014. NeEstimator v2: re‐implementation of software for the estimation of contemporary effective population size (Ne) from genetic data // Mol. Ecol. Resour. V. 14. № 1. P. 209–214. https://doi.org/10.1111/1755-0998.12157
  79. Donaldson M.R., Hinch S.G., Patterson D.A. et al. 2011. The consequences of angling, beach seining, and confinement on the physiology, post-release behaviour and survival of adult sockeye salmon during upriver migration // Fish. Res. V. 108. № 1. P. 133–141. https://doi.org/10.1016/j.fishres.2010.12.011
  80. Eaton J.G., McCormick J.H., Goodno B.E. et al. 1995. A field information-based system for estimating fish temperature tolerances // Fisheries. V. 20. № 4. P. 10–18. https://doi.org/10.1577/1548-8446(1995)020<0010:AFISFE>2.0.CO;2
  81. England P.R., Osler G.H.R., Woodworth L.M. et al. 2003. Effects of intense versus diffuse population bottlenecks on microsatellite genetic diversity and evolutionary potential // Conserv. Genet. V. 4. № 5. P. 595–604. https://doi.org/10.1023/A:1025639811865
  82. Evans A.F., Wertheimer R.H., Keefer M.L. et al. 2008. Transportation of steelhead kelts steelhead to increase iteroparity in the Columbia and Snake Rivers // N. Am. J. Fish. Manage. V. 28. № 6. P. 1818–1827. https://doi.org/10.1577/M08-043.1
  83. Excoffier L., Laval G., Schneider S. 2005. Arlequin (version 3.0): an integrated software package for population genetics data analysis // Evol. Bioinform. V. 1. P. 47–50. https://doi.org/10.1177/117693430500100003
  84. Fraik A.K., McMillan J.R., Liermann M. et al. 2021. The Impacts of dam construction and removal on the genetics of recovering steelhead (Oncorhynchus mykiss) populations across the Elwha River watershed // Genes. V. 12. № 1. Article 89. https://doi.org/10.3390/genes12010089
  85. Frankham R. 1995. Effective population size/adult population size ratios in wildlife: a review // Genet. Res. V. 66. № 2. P. 95–107. https://doi.org/10.1017/S0016672300034455
  86. Garant D., Dodson J.J., Bernatchez L. 2000. Ecological determinants and temporal stability of the within-river population structure in Atlantic salmon (Salmo salar L.) // Mol. Ecol. V. 9. № 5. P. 615–628. https://doi.org/10.1046/j.1365-294x.2000.00909.x
  87. Garcia-Vazquez E., Moran P., Martinez J.L. et al. 2001. Alternative mating strategies in Atlantic Salmon and brown trout // J. Hered. V. 92. № 2. P. 146–149. https://doi.org/10.1093/jhered/92.2.146
  88. Garza J.C., Williamson E.G. 2001. Detection of reduction in population size using data from microsatellite loci // Mol. Ecol. V. 10. № 2. P. 305–318. https://doi.org/10.1046/j.1365-294X.2001.01190.x
  89. Garza J.C., Gilbert-Horvath E.A., Spence B.C. et al. 2014. Population structure of steelhead in coastal California // Trans. Am. Fish. Soc. V. 143. № 1. P. 134–152. https://doi.org/10.1080/00028487.2013.822420
  90. Gayeski N., McMillan B., Trotter P. 2011. Historical abundance of Puget Sound steelhead, Oncorhynchus mykiss, estimated from catch record data // Can. J. Fish. Aquat. Sci. V. 68. № 3. P. 498–510. https://doi.org/10.1139/F10-166
  91. Gomez-Uchida D., Palstra F.S., Knight T.W., Ruzzante D.E. 2013. Contemporary effective population and metapopulation size (Ne and meta-Ne): comparison among three salmonids inhabiting a fragmented system and differing in gene flow and its asymmetries// Ecol. Evol. V. 3. № 3. P. 569–580. https://doi.org/10.1002/ece3.485
  92. Goudet J. 2001. FSTAT, a program to estimate and test gene diversities and fixation indices (version 2.9.3) (http://www2.unil.ch/popgen/softwares/fstat.htm. Version 04/2025).
  93. Gustafson R.G., Waples R.S., Myers J.M. et al. 2007. Pacific salmon extinctions: quantifying lost and remaining diversity // Conserv. Biol. V. 21. № 4. P. 1009–1020. https://doi.org/10.1111/j.1523-1739.2007.00693.x
  94. Hall J., Roni P., Bennett T. et al. 2016. Life history diversity of steelhead in two coastal Washington Watersheds // Trans. Am. Fish. Soc. V. 145. № 5. P. 990–1005. https://doi.org/10.1080/00028487.2016.1194893
  95. Hamilton J.B., Curtis G.L., Snedaker S.M., White D.K. 2005. Distribution of anadromous fishes in the Upper Klamath River watershed prior to hydropower dams — a synthesis of the historical evidence // Fisheries. V. 30. № 4. P. 10–20. https://doi.org/10.1577/1548-8446(2005)30[10:DOAFIT] 2.0.CO;2
  96. Hansen M.M., Nielsen E.E., Mensberg K.-L.D. 1997. The problem of sampling families rather than populations: relatedness among individuals in samples of juvenile brown trout Salmo trutta L. // Mol. Ecol. V. 6. № 5. P. 469–474. https://doi.org/10.1046/j.1365-294X.1997.t01-1-00202.x
  97. Hansen M.M., Fraser D.J., Meier K., Mensberg K.-L.D. 2009. Sixty years of anthropogenic pressure: a spatio-temporal genetic analysis of brown trout populations subject to stocking and population declines // Mol. Ecol. V. 18. № 12. P. 2549–2562. https://doi.org/10.1111/j.1365-294X.2009.04198.x
  98. Hatch D.R., Fast D.E., Bosch W.J. et al. 2013. Survival and traits of reconditioned kelt steelhead Oncorhynchus mykiss in the Yakima River, Washington // N. Am. J. Fish. Manage. V. 33. № 3. P. 615–625. https://doi.org/10.1080/02755947.2013.788586
  99. Heath D.D., Pollard S., Herbinger C. 2001. Genetic structure and relationships among steelhead trout (Oncorhynchus mykiss) populations in British Columbia // Heredity. V. 86. № 5. P. 618–627. https://doi.org/10.1046/j.1365-2540.2001.00867.x
  100. Heath D.D., Busch C., Kelly J., Atagi D.Y. 2002. Temporal change in genetic structure and effective population size in steelhead trout (Oncorhynchus mykiss) // Mol. Ecol. V. 11. № 2. P. 197–214. https://doi.org/10.1046/j.1365-294X.2002.01434.x
  101. Heath D.D., Bettles C.M., Jamieson S. et al. 2008. Genetic differentiation among sympatric migratory and resident life history forms of rainbow trout in British Columbia // Trans. Am. Fish. Soc. V. 137. № 4. P. 1268–1278. https://doi.org/10.1577/T05-278.1
  102. Hedrick P.W., Miller P.S. 1992. Conservation genetics: techniques and fundamentals // Ecol. Appl. V. 2. № 1. P. 30–46. https://doi.org/10.2307/1941887
  103. Helfman G.S. 2007. Fish conservation: a guide to understanding and restoring global aquatic biodiversity and fishery resources. Washington: Island Press, 584 p.
  104. Helfman G.S. 2013. National “versus” global red lists of imperiled fishes: why the discord? // Environ. Biol. Fish. V. 96. № 10. P. 1159–1168. https://doi.org/10.1007/s10641-011-9843-x
  105. Hendry M.A., Wenburg J.K., Myers K.W., Hendry A.P. 2002. Genetic and phenotypic variation through the migratory season provides evidence for multiple populations of wild steelhead in the Dean River, British Columbia // Trans. Am. Fish. Soc. V. 131. № 3. P. 418–434. https://doi.org/10.1577/1548-8659(2002)131<0418:GAPVTT>2.0.CO;2
  106. Hess J.E., Ackerman M.W., Fryer J.K. et al. 2016. Differential adult migration-timing and stock-specific abundance of steelhead in mixed stock assemblages // ICES J. Mar. Sci. V. 73. № 10. P. 2606–2615. https://doi.org/10.1093/icesjms/fsw138
  107. Irvine J.R., Fukuwaka M. 2011. Pacific salmon abundance trends and climate change // ICES J. Mar. Sci. V. 68. № 6. P. 1122–1130. https://doi.org/10.1093/icesjms/fsq199
  108. Jelks H.L., Walsh S.J., Burkhead N.M. et al. 2008. Conservation status of imperiled North American freshwater and diadromous fishes // Fisheries. V. 33. № 8. P. 372–407. https://doi.org/10.1577/1548-8446-33.8.372
  109. Jennings S., Smith A.D.M., Fulton E.A., Smith D.C. 2014. The ecosystem approach to fisheries: management at the dynamic interface between biodiversity conservation and sustainable use // Ann. N.Y. Acad. Sci. V. 1322. № 1. P. 48–60. https://doi.org/10.1111/nyas.12489
  110. Johnson B.M., Johnson McL.S., Thorgaard G.H. 2019. Salmon genetics and management in the Columbia River Basin // Northw. Sci. V. 92. № sp5. P. 346–363. https://doi.org/10.3955/046.092.0505
  111. Jordan W.C., Youngson A.F., Hay D.W., Ferguson A. 1992. Genetic protein variation in natural populations of Atlantic salmon (Salmo salar) in Scotland: temporal and spatial variation // Can. J. Fish. Aquat. Sci. V. 49. № 9. P. 1863–1872. https://doi.org/10.1139/f92-206
  112. Jorde P.E., Ryman N. 1995. Temporal allele frequency change and estimation of effective size in populations with overlapping generations // Genetics. V. 139. № 2. P. 1077–1090. https://doi.org/10.1093/genetics/139.2.1077
  113. Jorde P.E., Ryman N. 1996. Demographic genetics of brown trout (Salmo trutta) and estimation of effective population size from temporal change of allele frequencies // Genetics. V. 143. № 3. P. 1369–1381. https://doi.org/10.1093/genetics/143.3.1369
  114. Jorde P.E., Ryman N. 2007. Unbiased estimator for genetic drift and effective population size // Genetics. V. 177. № 2. P. 927–935. https://doi.org/10.1534/genetics.107.075481
  115. Kaeriyama M. 2023. Warming climate impacts on production dynamics of southern populations of Pacific salmon in the North Pacific Ocean // Fish. Oceanogr. V. 32. № 1. P. 121–132. https://doi.org/10.1111/fog.12598
  116. Keefer M.L., Caudill C.C. 2014. Homing and straying by anadromous salmonids: a review of mechanisms and rates // Rev. Fish Biol. Fish. V. 24. № 1. P. 333–368. https://doi.org/10.1007/s11160-013-9334-6
  117. Keefer M.L., Peery C.A., Caudill C.C. 2008a. Migration timing of Columbia River spring Chinook salmon: effects of temperature, river discharge, and ocean environment // Trans. Am. Fish. Soc. V. 137. № 4. P. 1120–1133. https://doi.org/10.1577/t07-008.1
  118. Keefer M.L., Wertheimer R.H., Evans A.F. et al. 2008b. Iteroparity Columbia River summer-run steelhead (Oncorhynchus mykiss): implications for conservation // Can. J. Fish. Aquat. Sci. V. 65. № 12. P. 2592–2605. https://doi.org/10.1139/F08-160
  119. Keefer M.L., Caudill C.C., Peery C.A., Moser M.L. 2013. Context-dependent diel behavior of upstream-migrating anadromous fishes // Environ. Biol. Fish. V. 96. № 6. P. 691–700. https://doi.org/10.1007/s10641-012-0059-5
  120. Kendall N.W., McMillan J.R., Sloat M.R. et al. 2014. Anadromy and residency in steelhead and rainbow trout (Oncorhynchus mykiss): a review of the processes and patterns // Can. J. Fish. Aquat. Sci. V. 72. № 3. P. 319–342. https://doi.org/10.1139/cjfas-2014-0192
  121. Koch I.J., Narum S.R. 2021. An evaluation of the potential factors affecting lifetime reproductive success in salmonids // Evol. Appl. V. 14. № 8. P. 1929–1957. https://doi.org/10.1111/eva.13263
  122. Laikre L., Jorde P.E., Ryman N. 1998. Temporal change of mitochondrial DNA haplotype frequencies and female effective size in a brown trout (Salmo trutta) population // Evolution. V. 52. № 3. P. 910–915. https://doi.org/10.1111/j.1558-5646.1998.tb03716.x
  123. Leberg P.L. 1992. Effects of population bottlenecks on genetic diversity as measured by allozyme electrophoresis // Evolution. V. 46. № 2. P. 477–494. https://doi.org/10.1111/j.1558-5646.1992.tb02053.x
  124. Lee A.M., Steinar E., Sæther B.-E. 2011. The influence of persistent individual differences and age at maturity on effective population size // Proc. R. Soc. B. V. 278. № 1722. P. 3303–3312. http://doi.org/10.1098/rspb.2011.0283
  125. Lewis P.O., Zaykin D. 2001. GDA (Genetic data analysis): computer program for the analysis of allelic data (http://plewis.github.io/software/. Version 04/2025).
  126. Limburg K.E., Waldman J.R. 2009. Dramatic declines in North Atlantic diadromous fishes // BioScience. V. 59. № 11. P. 955–965. https://doi.org/10.1525/bio.2009.59.11.7
  127. Martínez A., Garza J.C., Pearse D.E. 2011. A microsatellite genome screen identifies chromosomal regions under differential selection in steelhead and rainbow trout // Trans. Am. Fish. Soc. V. 140. № 3. P. 829–842. https://doi.org/10.1080/00028487.2011.588094
  128. Matala A.P., Ackerman M.W., Campbell M.R., Narum S.R. 2014. Relative neutral and non-neutral genetic differentiation to inform conservation of steelhead trout across highly variable landscapes // Evol. Appl. V. 7. № 6. P. 682–701. https://doi.org/10.1111/eva.12174
  129. Matala A.P., Hatch D.R., Everett S. et al. 2016. What goes up does not come down: the stock composition and demographic characteristics of upstream migrating steelhead differ from post-spawn emigrating kelts // ICES J. Mar. Sci. V. 73. № 10. P. 2595–2605. https://doi.org/10.1093/icesjms/fsw109
  130. McCusker M.R., Parkinson E., Taylor E.B. 2000. Mitochondrial DNA variation in rainbow trout (Oncorhynchus mykiss) across its native range: testing biogeographical hypotheses and their relevance to conservation // Mol. Ecol. V. 9. № 12. P. 2089–2108. https://doi.org/10.1046/j.1365-294X.2000.01121.x
  131. McElhany P., Rucklelshaus M.H., Ford M.J. et al. 2000. Viable salmonid populations and the recovery of evolutionarily significant units // NOAA Tech. Memo. NMFS-NWFSC-42. 156 p.
  132. McLean J.E., Bentzen P., Quinn T.P. 2003. Differential reproductive success of sympatric, naturally spawning hatchery and wild steelhead (Oncorhynchus mykiss) through the adult stage // Can. J. Fish. Aquat. Sci. V. 60. № 4. P. 433–440. https://doi.org/10.1139/f03-040
  133. McMillan J.R., Katz S.L., Pess G.R. 2007. Observational evidence of spatial and temporal structure in a sympatric anadromous (winter steelhead) and resident rainbow trout mating system on the Olympic Peninsula, Washington // Trans. Am. Fish. Soc. V. 136. № 3. P. 736–748. https://doi.org/10.1577/T06-016.1
  134. McPhee M.V., Utter F., Stanford J.A. et al. 2007. Population structure and partial anadromy in Oncorhynchus mykiss from Kamchatka: relevance for conservation strategies around the Pacific Rim // Ecol. Freshw. Fish. V. 16. № 4. P. 539–547. https://doi.org/10.1111/j.1600-0633.2007.00248.x
  135. McPhee M.V., Whited D.C., Kuzishchin K.V., Stanford J.A. 2014. The effects of riverine physical complexity on anadromy and genetic diversity in steelhead or rainbow trout Oncorhynchus mykiss around the Pacific Rim // J. Fish Biol. V. 85. № 1. P. 132–150. https://doi.org/10.1111/jfb.12286
  136. Meengs C.C., Lackey R.T. 2005. Estimating the size of historical Oregon salmon runs // Rev. Fish. Sci. V. 13. № 1. P. 51–66. https://doi.org/10.1080/10641260590921509
  137. Miller L.M., Kapuscinski A.R. 1997. Historical analysis of genetic variation reveals low effective population size in a northern pike (Esox lucius) population // Genetics. V. 147. № 3. P. 1249–1258. https://doi.org/10.1093/genetics/147.3.1249
  138. Miller L.M., Kapuscinski A.R. 2003. Genetic guidelines for hatchery supplementation programs // Population genetics: principles and applications for fisheries scientists. Bethesda: Am. Fish. Soc. P. 329–355.
  139. Muñoz N.J., Farrell A.P., Heath J.W., Neff B.D. 2015. Reply to ‘Response of chinook salmon to climate change’ // Nat. Clim. Change. V. 5. № 7. P. 615. https://doi.org/10.1038/nclimate2671
  140. Myers J., Busack C., Rawding D. et al. 2006. Historical population structure of Pacific salmonids in the Willamette River and Lower Columbia River Basins // NOAA Tech. Memo. NMFS-NWFSC-73. 311 p.
  141. Myers K.W., Irvine J.R., Logerwell E.A. et al. 2016. Pacific salmon and steelhead: life in a changing winter ocean // NPAFC Bull. № 6. P. 113–138. https://doi.org/10.23849/npafcb6/113.138
  142. Narum S.R., Powell M.S., Evenson R. et al. 2006. Microsatellites reveal population substructure of Klickitat River native steelhead and genetic divergence from an introduced stock // N. Am. J. Fish. Manage. V. 26. № 1. P. 147–155. https://doi.org/10.1577/M05-055.1
  143. Narum S.R., Hatch D., Talbot A.J. et al. 2008. Iteroparity in complex mating systems of steelhead Oncorhynchus mykiss (Walbaum) // J. Fish Biol. V. 72. № 1. P. 45–60. https://doi.org/10.1111/j.1095-8649.2007.01649.x
  144. Narver D.W. 1969. Age and size of steelhead trout in the Babine River, British Columbia // J. Fish. Res. Board Can. V. 26. № 10. P. 2754–2760. https://doi.org/10.1139/f69-269
  145. Nielsen E.E., Hansen M.M. 2008. Waking the dead: the value of population genetic analyses of historical samples // Fish Fish. V. 9. № 4. P. 450–461. https://doi.org/10.1111/j.1467-2979.2008.00304.x
  146. Nielsen E.E., Hansen M.M., Loeschcke V. 1999. Analysis of DNA from old scale samples: technical aspects, applications and perspectives for conservation // Hereditas. V. 130. № 3. P. 265–276. https://doi.org/10.1111/j.1601-5223.1999.00265.x
  147. Nielsen J.L., Fountain M.C., Wright J.M. 1997. Biogeographic analysis of Pacific trout (Oncorhynchus mykiss) in California and Mexico based on mitochondrial DNA and nuclear microsatellites // Molecular systematics of fishes. San Diego: Acad. Press. P. 53–73. https://doi.org/10.1016/B978-012417540-2/50006-3
  148. Nielsen J.L., Crow K.D., Fountain M.C. 1999. Microsatellite diversity and conservation of a relic trout population: McCloud River redband trout // Mol. Ecol. V. 8. № s1. P. S129–S142. https://doi.org/10.1046/j.1365-294X.1999.00817.x
  149. Nielsen J.L., Byrne A., Graziano S.L., Kozfkay C.C. 2009. Steelhead genetic diversity at multiple spatial scales in a managed basin: Snake River, Idaho // N. Am. J. Fish. Manage. V. 29. № 3. P. 680–701. https://doi.org/10.1577/M08-105.1
  150. Nielsen J.L., Turner S.M., Zimmerman C.E. 2011. Electronic tags and genetics explore variation in migrating steelhead kelts (Oncorhynchus mykiss), Ninilchik River, Alaska // Can. J. Fish. Aquat. Sci. V. 68. № 1. P. 1–16. https://doi.org/10.1139/F10-124
  151. Northcote T.G., Atagi D.Y. 1997. Pacific salmon abundance trends in the Fraser River watershed compared with other British Columbia systems // Pacific salmon and their ecosystems. Boston: Springer. P. 199–219. https://doi.org/10.1007/978-1-4615-6375-4_14
  152. Null R.E., Niemela K.S., Hamelberg S.F. 2012. Post-spawn migrations of hatchery-origin Oncorhynchus mykiss kelts in the Central Valley of California // Environ. Biol. Fish. V. 96. № 2. P. 341–353. https://doi.org/10.1007/s10641-012-0075-5
  153. Okazaki T. 1984. Genetic divergence and its zoogeographic implications in closely related species Salmo gairdneri and Salmo mykiss // Jpn. J. Ichthyol. V. 31. № 3. P. 297–311. https://doi.org/10.11369/jji1950.31.297
  154. Olsen J.B., Wilson S.L., Kretschmer E.J. et al. 2000. Characterization of 14 tetranucleotide microsatellite loci derived from sockeye salmon // Mol. Ecol. V. 9. № 12. P. 2185–2187. https://doi.org/10.1046/j.1365-294X.2000.105317.x
  155. Olver C.H., Shuter B.J., Minns C.K. 1995. Toward a definition of conservation principles for fisheries management // Can. J. Fish. Aquat. Sci. V. 52. № 7. P. 1584–1594. https://doi.org/10.1139/f95-751
  156. Palstra F.P., O’Connell M.F., Ruzzante D.E. 2009. Age structure, demography and effective population size in Atlantic salmon (Salmo salar) // Genetics. V. 182. № 4. P. 1233–1249. https://doi.org/10.1534/genetics.109.101972
  157. Papa F., Prigent C., Aires F. et al. 2007. Interannual variability of surface water extent at the global scale, 1993–2004 // J. Geophys. Res. V. 115. № D12. Article D12111. https://doi.org/10.1029/2009JD012674
  158. Parkinson E.A. 1984. Genetic variation in populations of steelhead trout (Salmo gairdneri) in British Columbia // Can. J. Fish. Aquat. Sci. V. 41. № 10. P. 1412–1420. https://doi.org/10.1139/f84-174
  159. Pavlov D.S., Borisenko E.S., Pashin V.M. 2009. Investigations of spawning migration and assessment of abundance of the Kamchatka steelhead (Parasalmo mykiss) from the Utkholok River by means of Didson dual-frequency identification sonar // J. Ichthyol. V. 49. № 11. P. 1042–1064. https://doi.org/10.1134/S0032945209110046
  160. Pearse D.E., Donohoe C.J., Garza J.C. 2007. Population genetics of steelhead (Oncorhynchus mykiss) in the Klamath River // Evol. Biol. Fish. V. 80. № 4. P. 377–387. https://doi.org/10.1007/s10641-006-9135-z
  161. Pearse D.E., Hayes S.A., Bond M.H. et al. 2009. Over the falls? Rapid evolution of ecotypic differentiation in steelhead/rainbow trout (Oncorhynchus mykiss) // J. Hered. V. 100. № 5. P. 515–525. https://doi.org/10.1093/jhered/esp040
  162. Pearse D.E., Martinez E., Garza J.C. 2011. Disruption of historical patterns of isolation by distance in costal steelhead // Conserv. Genet. V. 12. № 3. P. 691–700. https://doi.org/10.1007/s10592-010-0175-8
  163. Pearsons T.N., Miller M.D. 2023. Stray compositions of hatchery-origin Chinook Salmon and steelhead in natural spawning populations of the upper Columbia watershed // Trans. Am. Fish. Soc. V. 152. № 5. P. 515–529. https://doi.org/10.1002/tafs.10434
  164. Pearsons T.N., O’Connor R.R. 2020. Stray rates of natural-origin Chinook Salmon and steelhead in the upper Columbia watershed // Trans. Am. Fish. Soc. V. 149. № 2. P. 147–158. https://doi.org/10.1002/tafs.10220
  165. Penney Z.L., Moffitt C.M. 2014. Histological assessment of organs in sexually mature post-spawning steelhead trout and insights into iteroparity // Rev. Fish Biol. Fish. V. 24. № 3. P. 781–801. https://doi.org/10.1007/s11160-013-9338-2
  166. Pess G.R. 2009. Patterns and processes of salmon colonization: Ph.D Thesis. Seattle: Univ. Washington, 224 p.
  167. Pinsky M.L., Palumbi S.R. 2014. Meta-analysis reveals lower genetic diversity in overfished populations // Mol. Ecol. V. 23. № 1. P. 29–39. https://doi.org/10.1111/mec.12509
  168. Piry S., Luikart G., Cornuet J.-M. 1999. BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data // J. Hered. V. 90. № 4. P. 502–503. https://doi.org/10.1093/jhered/90.4.502
  169. Poff N.L., Olden J.D., Merritt D.M., Pepin D.M. 2007. Homogenization of regional river dynamics by dams and global biodiversity implications // P. Natl. Acad. Sci. USA. V. 104. № 14. P. 5732–5737. https://doi.org/10.1073/pnas.0609812104
  170. Powell J.H., Campbell M.R. 2020. Contemporary genetic structure affects genetic stock identification of steelhead trout in the Snake River basin // Ecol. Evol. V. 10. № 19. P. 10520–10531. https://doi.org/10.1002/ece3.6708
  171. Pritchard J.K., Stephens M., Donnelly P. 2000. Inference of population structure using multilocus genotype data // Genetics. V. 155. № 2. P. 945–959. https://doi.org/10.1093/genetics/155.2.945
  172. Radinger J., Britton J.R., Carlson S.M. et al. 2019. Effective monitoring of freshwater fish // Fish Fish. V. 20. № 4. P. 729–747. https://doi.org/10.1111/faf.12373
  173. Reisenbichler R.R., Phelps S.R. 1989. Genetic variation in steelhead (Salmo gairdneri) from the north coast of Washington // Can. J. Fish. Aquat. Sci. V. 46. № 1. P. 66–73. https://doi.org/10.1139/f89-010
  174. Reisenbichler R.R., McIntyre J.D., Solazzi M.F., Landino S.W. 1992. Genetic variation in steelhead of Oregon and Northern California // Trans. Am. Fish. Soc. V. 121. № 2. P. 158–169. https://doi.org/10.1577/1548-8659(1992)121<0158:GVISOO>2.3.CO;2
  175. Return to the river: restoring salmon to the Columbia River. 2005. Amsterdam et al.: Acad. Press, 699 p. https://doi.org/10.1016/B978-0-12-088414-8.X5000-0
  176. Rice W.R. 1989. Analyzing tables of statistical tests // Evolution. V. 43. № 1. P. 223–225. https://doi.org/10.2307/2409177
  177. Rice J., Ridgeway L. 2010. Conservation of biodiversity and fisheries management // Handbook of marine fisheries conservation and management. N.Y.: Oxford Univ. Press. P. 139–149.
  178. Richards C., Leberg P.L. 1996. Temporal changes in allele frequencies and a population’s history of severe bottlenecks // Conserv. Biol. V. 10. № 3. P. 832–839. https://doi.org/10.1046/j.1523-1739.1996.10030832.x
  179. Rousset F. 2008. genepop’007: a complete re-implementation of the GENEPOP software for Windows and Linux // Mol. Ecol. Resour. V. 8. № 1. P. 103–106. https://doi.org/10.1111/j.1471-8286.2007.01931.x
  180. Ryman N., Palm S. 2006. POWSIM: a computer program for assessing statistical power when testing for genetic differentiation // Mol. Ecol. Notes. V. 6. № 3. P. 600–602. https://doi.org/10.1111/j.1471-8286.2006.01378.x
  181. Ryman N., Palm S., André C. et al. 2006. Power for detecting genetic divergence: differences between statistical methods and marker loci // Mol. Ecol. V. 15. № 8. P. 2031–2045. https://doi.org/10.1111/j.1365-294X.2006.02839.x
  182. Sánchez J.A., Clabby C., Ramos D. et al. 1996. Protein and microsatellite single locus variability in Salmo salar L. (Atlantic salmon) // Heredity. V. 77. № 4. P. 423–432. https://doi.org/10.1038/hdy.1996.162
  183. Savvaitova K.A., Kuzischin K.V., Maximov S.V. 2000. Kamchatka steelhead: population trends and life history // Sustainable fisheries management. Pacific salmon. Boca Raton: CRC Press. P. 195–203. https://doi.org/10.1201/9780429104411-16
  184. Schoen E.R., Wipfli M.S., Trammell E.J. et al. 2017. Future of pacific salmon in the face of environmental change: lessons from one of the world’s remaining productive salmon regions // Fisheries. V. 42. № 10. P. 538–553. https://doi.org/10.1080/03632415.2017.1374251
  185. Schroeder R.K., Lindsay R.B., Kenaston K.R. 2001. Origin and straying of hatchery winter steelhead in Oregon coastal rivers // Trans. Am. Fish. Soc. V. 130. № 3. P. 431–441. https://doi.org/10.1577/1548-8659(2001)130<0431:OASOHW>2.0.CO;2
  186. Schultz J.A., Darling E.S., Côté I.M. 2013. What is an endangered species worth? Threshold costs for protecting imperilled fishes in Canada // Mar. Policy. V. 42. P. 125–132. https://doi.org/10.1016/j.marpol.2013.01.021
  187. Shrimpton J.M., Heath D.D. 2003. Census vs. effective population size in chinook salmon: largeand small-scale environmental perturbation effects // Mol. Ecol. V. 12. № 10. P. 2571–2583. https://doi.org/10.1046/j.1365-294X.2003.01932.x
  188. Scott W.B., Crossman E.J. 1973. Freshwater fishes of Canada // Bull. Fish. Res. Board Can. № 184. 966 p.
  189. Siegel J., Crozier L. 2019. Impacts of climate change on salmon of the Pacific Northwest. A review of the scientific literature published in 2018. Seattle: U.S. Natl. Mar. Fish. Serv., 67 p. https://doi.org/10.13140/RG.2.2.35382.04164
  190. Siegel J., Crozier L. 2020. Impacts of climate change on salmon of the Pacific Northwest. A review of the scientific literature published in 2019. Seattle: U.S. Natl. Mar. Fish. Serv., 46 p. https://doi.org/10.25923/jke5-c307
  191. Slaney T.L., Hyatt K.D., Northcote T.G., Fielden R.J. 1996. Status of anadromous salmon and trout in British Columbia and Yukon // Fisheries. V. 21. № 10. P. 20–35. https://doi.org/10.1577/1548-8446(1996)021<0020:SOASAT>2.0.CO;2
  192. Slatkin M. 1985. Rare alleles as indicators of gene flow // Evolution. V. 39. № 1. P. 53–65. https://doi.org/10.1111/j.1558-5646.1985.tb04079.x
  193. Small M.P., McLellan J.G., Loxterman J. et al. 2007. Fine-scale population structure of rainbow trout in the Spokane River drainage in relation to hatchery stocking and barriers // Trans. Am. Fish. Soc. V. 136. № 2. P. 301–317. https://doi.org/10.1577/T06-037.1
  194. Smith B.D., Ward B.R. 2000. Trends in wild adult steelhead (Oncorhynchus mykiss) abundance for coastal regions of British Columbia support the variable marine survival hypothesis // Can. J. Fish. Aquat. Sci. V. 57. № 2. P. 271–284. https://doi.org/10.1139/f99-254
  195. Tessier N., Bernatchez L. 1999. Stability of population structure and genetic diversity across generations assessed by microsatellites among sympatric populations of landlocked Atlantic salmon (Salmo salar L.) // Mol. Ecol. V. 8. № 2. P. 169–179. https://doi.org/10.1046/j.1365-294X.1999.00547.x
  196. Thompson T.Q., Bellinger M.R., O’Rourke S.M. et al. 2019. Anthropogenic habitat alteration leads to rapid loss of adaptive variation and restoration potential in wild salmon populations // P. Natl. Acad. Sci. USA. V. 116. № 1. P. 177–186. https://doi.org/10.1073/pnas.1811559115
  197. Turner T.F., Wares J.P., Gold J.R. 2002. Genetic effective size is three orders of magnitude smaller than adult census size in an abundant, estuarine-dependent marine fish (Sciaenops ocellatus) // Genetics. V. 162. № 3. P. 1329–1339. https://doi.org/10.1093/genetics/162.3.1329
  198. Twardek W.M., Gagne T.O., Elmer L.K. et al. 2018. Consequences of catch-and-release angling on the physiology, behaviour and survival of wild steelhead Oncorhynchus mykiss in the Bulkley River, British Columbia // Fish. Res. V. 206. P. 235–246. https://doi.org/10.1016/j.fishres.2018.05.019
  199. Van Doornik D.M., Hess M.A., Johnson M.A. et al. 2015. Population structure of Willamette River steelhead and the influence of introduced stocks // Trans. Am. Fish. Soc. V. 144. № 1. P. 150–162. https://doi.org/10.1080/00028487.2014.982178
  200. Van Oosterhout C., Hutchinson W.F., Wills D.P.M., Shipley P. 2004. MICRO-CHECKER: software for identifying and correcting genotyping errors in microsatellite data // Mol. Ecol. V. 4. № 3. P. 535–538. https://doi.org/10.1111/j.1471-8286.2004.00684.x
  201. Vucetich J.A., Waite T.A. 2003. Spatial patterns of demography and genetic processes across the species’ range: null hypotheses for landscape conservation genetics // Conserv. Genet. V. 4. № 5. P. 639–645. https://doi.org/10.1023/A:1025671831349
  202. Walter R.P., Aykanat T., Kelly D.W. et al. 2009. Gene flow increases temporal stability of Chinook salmon (Oncorhynchus tshawytscha) populations in the Upper Fraser River, British Columbia, Canada // Can. J. Fish. Aquat. Sci. V. 66. № 2. P. 167–176. https://doi.org/10.1139/F08-201
  203. Waples R.S., Teel D.J. 1990. Conservation genetics of Pacific salmon I. Temporal changes in allele frequency // Conserv. Biol. V. 4. № 2. P. 144–156. https://doi.org/10.1111/j.1523-1739.1990.tb00103.x
  204. Waples R.S., Yokota M. 2007. Temporal estimates of effective population size in species with overlapping generations // Genetics. V. 175. № 1. P. 219–233. https://doi.org/10.1534/genetics.106.065300
  205. Waples R.S., Nammack M., Cochrane J.F., Hutchings J.A. 2013. A tale of two acts: endangered species listing practices in Canada and the United States // BioScience. V. 63. № 9. P. 723–734. https://doi.org/10.1525/bio.2013.63.9.8
  206. Ward B.R. 2000. Declivity in steelhead (Oncorhynchus mykiss) recruitment at the Keogh River over the past decade // Can. J. Fish. Aquat. Sci. V. 57. № 2. P. 298–306. https://doi.org/10.1139/f99-243
  207. Wenburg J.K., Olsen J.B., Bentzen P. 1996. Multiplexed systems of microsatellites for genetic analysis in coastal cutthroat trout (Oncorhynchus clarki clarki) and steelhead (Oncorhynchus mykiss) // Mol. Mar. Biol. Biotechnol. V. 5. № 4. P. 273–283.
  208. Westley P.A.H., Quinn T.P., Dittman A.H. 2013. Rates of straying by hatchery-produced Pacific salmon (Oncorhynchus spp.) and steelhead (Oncorhynchus mykiss) differ among species, life history types, and populations // Can. J. Fish. Aquat. Sci. V. 70. № 5. P. 735–746. https://doi.org/10.1139/cjfas-2012-0536
  209. Williamson E.G., Slatkin M. 1999. Using maximum likelihood to estimate population size from temporal changes in allele frequencies // Genetics. V. 152. № 2. P. 755–761. https://doi.org/10.1093/genetics/152.2.755
  210. Willis S.C., Hess J.E., Fryer J.K. et al. 2020. Steelhead (Oncorhynchus mykiss) lineages and sexes show variable patterns of association of adult migration timing and age-at-maturity traits with two genomic regions // Evol. Appl. V. 13. № 10. P. 2836–2856. https://doi.org/10.1111/eva.13088
  211. Winans G.A., Paquin M.M., Van Doornik D.M. 2004. Genetic stock identification of steelhead in the Columbia River basin: an evaluation of different molecular markers // N. Am. J. Fish. Manage. V. 24. № 2. P. 672–685. https://doi.org/10.1577/M03-052.1
  212. Winans G.A., Allen M.B., Baker J. et al. 2018. Dam trout: genetic variability in Oncorhynchus mykiss above and below barriers in three Columbia River systems prior to restoring migrational access // PLOS ONE. V. 13. № 5. Article e0197571. https://doi.org/10.1371/journal.pone.0197571
  213. Wright S. 1931. Evolution in Mendelian populations // Genetics. V. 16. № 2. P. 97–159. https://doi.org/10.1093/genetics/16.2.97
  214. Zimmerman M.S., Sloat M.R., Kuzishchin K.V. et al. 2022. Diversity of life history traits, growth, and lipid storage in migratory variants of steelhead and rainbow trout (Oncorhynchus mykiss) in Kamchatka, Russia // Can. J. Fish. Aquat. Sci. V. 79. № 10. P. 1625–1640. https://doi.org/10.1139/cjfas-2021-0357

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).