Activity of enzymes of energy and carbohydrate metabolism in the organs of pink salmon Oncorhynchus gorbuscha (Salmonidae) during spawning migration

Cover Page

Cite item

Abstract

The article presents the results of the study of the activity of key enzymes of energy and carbohydrate metabolism in pink salmonOncorhynchus gorbuschaspawners during spawning migration from the estuary to the river. A decrease in the activity of carbohydrate metabolism enzymes (lactate dehydrogenase and pyruvate kinase), 1-glycerophosphate dehydrogenase in red muscles and liver, as well as cytochromecoxidase and aldolase in white muscles in fish at the river stage of the migration route has been shown. Relatively higher values of cytochromecoxidase activity in gills, glucose-6-phosphate dehydrogenase in red muscles, and aldolase in the liver were found in fish caught in the river. Apparently, as pink salmon spawners move to spawning grounds, metabolic changes occur associated with the redistribution of substrates towards increased use of lipids and proteins of muscle tissue to provide energy for the process of osmoregulation, high physical activity and reproductive function under conditions of complete exogenous starvation.

About the authors

N. S. Shulgina

Institute of Biology of Karelian Research Center of Russian Academy of Sciences

Email: Shulgina28@yandex.ru
Petrozavodsk, Russia

M. V. Kuznetsova

Institute of Biology of Karelian Research Center of Russian Academy of Sciences

Petrozavodsk, Russia

M. A. Rodin

Institute of Biology of Karelian Research Center of Russian Academy of Sciences

Petrozavodsk, Russia

M. Y. Krupnova

Institute of Biology of Karelian Research Center of Russian Academy of Sciences

Petrozavodsk, Russia

D. A. Efremov

Institute of Biology of Karelian Research Center of Russian Academy of Sciences

Petrozavodsk, Russia

N. N. Nemova

Institute of Biology of Karelian Research Center of Russian Academy of Sciences

Petrozavodsk, Russia

S. A. Murzina

Institute of Biology of Karelian Research Center of Russian Academy of Sciences

Petrozavodsk, Russia

References

  1. Ивантер Э.В.,Коросов А.В.2010. Элементарная биометрия. Петрозаводск: Изд-во ПетрГУ, 104 с.
  2. Колб В.Г.,Камышников В.Г.1976. Клиническая биохимия. Минск: Беларусь, 311 с.
  3. Кочетов Г.А.1980. Практическое руководство по энзимологии. М.: Высш. шк., 272 с.
  4. Максимович А.А.1990. Гормональная регуляция углеводного обмена у тихоокеанских лососей. Л.: Наука, 224 с.
  5. Немова Н.Н.1996. Внутриклеточные протеолитические ферменты у рыб. Петрозаводск: Изд-во КарНЦ РАН, 104 с.
  6. Чурова М.В.,Шульгина Н.С.,Крупнова М.Ю. и др.2021. Активность ферментов энергетического и углеводного обмена у молоди горбушиOncorhynchus gorbuscha(Walb.) при переходе из пресной среды в морскую // Изв. РАН. Сер. биол. № 5. С. 470–478. https://doi.org/10.31857/S1026347021040041
  7. Barciela P.,Soengas J.L.,Rey P. et al.1993. Carbohydrate metabolism in several tissues of rainbow trout,Oncorhynchus mykiss, is modified during ovarian recrudescence // Comp. Biochem. Physiol. Pt. B. Comp. Biochem. V. 106. № 4. P. 943–948. https://doi.org/10.1016/0305-0491(93)90055-A
  8. Bradford M.M.1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding // Anal. Biochem. V. 72. № 1–2. P. 248–254. https://doi.org/10.1016/0003-2697(76)90527-3
  9. Bücher T.,Pfleiderer G.1955. Pyruvate kinase from muscle: pyruvate phosphokinase, pyruvic phosphoferase, phosphopyruvate transphosphorylase, phosphate–transferring enzyme II, etc.Phosphoenolpyruvate + ADP⇌ ⇌Pyruvate + ATP // Methods in Enzymology. V. 1. N.Y.: Acad. Press. P. 435–440. https://doi.org/10.1016/0076-6879(55)01071-9
  10. Crossin G.T.,Hinch S.G.,Farrell A.P. et al.2003. Pink salmon (Oncorhynchus gorbuscha) migratory energetics: response to migratory difficulty and comparisons with sockeye salmon (Oncorhynchus nerka) // Can. J. Zool. V. 81. № 12. P. 1986–1995. https://doi.org/10.1139/z03-193
  11. Crossin G.T.,Hinch S.G.,Cooke S.J. et al.2009. Mechanisms influencing the timing and success of reproductive migration in a capital breeding semelparous fish species, the sockeye salmon // Physiol. Biochem. Zool. V. 82. № 6. P. 635–652. https://doi.org/10.1086/605878
  12. Eddy F.B.1982. Osmotic and ionic regulation in captive fish with particular reference to salmonids // Comp. Biochem. Physiol. Pt. B. Comp. Biochem. V. 73. № 1. P. 125–141. https://doi.org/10.1016/0305-0491(82)90205-X
  13. French C.J.,Hochachka P.W.,Mommsen T.P. 1983. Metabolic organization of liver during spawning migration of sockeye salmon // Am. J. Physiol. Regul. Integr. Comp. Physiol. V. 245. № 6. P. R827–R830. https://doi.org/10.1152/ajpregu.1983.245.6.R827
  14. Gilhousen P. 1980. Energy sources and expenditures and Fraser River sockeye salmon during their spawning migration // Int. Pac. Salmon Fish. Comm. Bull. V. 22. 51 p.
  15. Hinch S.G.,Cooke S.J.,Healey M.C.,Farrell A.P. 2006. Behavioural physiology of fish migrations: salmon as a model approach // Fish Рhysiol. V. 24. P. 239–295. https://doi.org/10.1016/S1546-5098(05)24007-4
  16. Kinnison M.T.,Unwin M.J.,Quinn T.P. 2003. Migratory costs and contemporary evolution of reproductive allocation in male chinook salmon // J. Evol. Biol. V. 16. № 6. P. 1257–1269. https://doi.org/10.1046/j.1420-9101.2003.00631.x
  17. Llewellyn L.,Sweeney G.E.,Ramsurn V.P. et al.1998. Cloning and unusual expression profile of the aldolase B gene from Atlantic salmon // Biochim. Biophys. Acta. Gene Struct. Expression. V. 1443. № 3. P. 375–380. https://doi.org/10.1016/S0167-4781(98)00229-2
  18. McCormick S.D.2001. Endocrine control of osmoregulation in teleost fish // Am. Zool. V. 41. № 4. P. 781–794. https://doi.org/10.1093/icb/41.4.781
  19. Metón I.,Mediavilla D.,Caseras A. et al.1999. Effect of diet composition and ration size on key enzyme activities of glycolysis–gluconeogenesis, the pentose phosphate pathway and amino acid metabolism in liver of gilthead sea bream (Sparus aurata) // Br. J. Nutr. V. 82. № 3. P. 223–232. https://doi.org/10.1017/S0007114599001403
  20. Miller K.M.,Schulze A.D.,Ginther N. et al.2009. Salmon spawning migration: metabolic shifts and environmental triggers // Comp. Biochem. Physiol. Pt. D. Genom. Proteom. V. 4. № 2. P. 75–89. https://doi.org/10.1016/j.cbd.2008.11.002
  21. Mommsen T.P. 2004. Salmon spawning migration and muscle protein metabolism: the August Krogh principle at work // Comp. Biochem. Physiol. Pt. B. Biochem. Mol. Biol. V. 139. № 3. P. 383–400. https://doi.org/10.1016/j.cbpc.2004.09.018
  22. Mommsen T.P.,French C.J.,Hochachka P.W.1980. Sites and patterns of protein and amino acid utilization during the spawning migration of salmon // Can. J. Zool. V. 58. № 10. P. 1785–1799. https://doi.org/10.1139/z80-246
  23. Morash A.J.,Yu W.,Le Moine C.M.R. et al.2013. Genomic and metabolic preparation of muscle in sockeye salmonOncorhynchus nerkafor spawning migration // Physiol. Biochem. Zool. V. 86. № 6. P. 750–760. https://doi.org/10.1086/673376
  24. Morgan J.D.,Iwama G.K.1999. Energy cost of NaCl transport in isolated gills of cutthroat trout // Am. J. Physiol. Regul. Integr. Comp. Physiol. V. 277. № 3. P. R631–R639. https://doi.org/10.1152/ajpregu.1999.277.3.R631
  25. Navarro I.,Gutiérrez J.1995. Fasting and starvation // Biochem. Mol. Biol. Fish. V. 4. P. 393–434. https://doi.org/10.1016/S1873-0140(06)80020-2
  26. Pacific salmon life histories. 1991. Vancouver: UBC Press, 564 p.
  27. Ruiz-Jarabo I.,Tinoco A.B.,Vargas-Chacoff L. et al.2019. Environmental salinity affects growth and metabolism in fingerling meagre (Argyrosomus regius) // Fishes. V. 4. P. 6. https://doi.org/10.3390/fishes4010006
  28. Shrimpton J.M.,Patterson D.A.,Richards J.G. et al.2005. Ionoregulatory changes in different populations of maturing sockeye salmonOncorhynchus nerkaduring ocean and river migration // J. Exp. Biol. V. 208. № 21. P. 4069–4078. https://doi.org/10.1242/jeb.01871
  29. Smith L.1955. Spectrophotometric assay of cytochrome c oxidase // Methods in Biochemical Analysis. V. 2. N.Y.: Intersci. Publ. P. 427–434. https://doi.org/10.1002/9780470110188.ch13
  30. Tian W.-N.,Braunstein L.D.,Pang J. et al.1998. Importance of glucose-6-phosphate dehydrogenase activity for cell growth // J. Biol. Chem. V. 273. № 17. P. 10609–10617. https://doi.org/10.1074/jbc.273.17.10609
  31. Treberg J.R.,Lewis J.M.,Driedzic W.R.2002. Comparison of liver enzymes in osmerid fishes: key differences between a glycerol accumulating species, rainbow smelt (Osmerus mordax), and a species that does not accumulate glycerol, capelin (Mallotus villosus) // Comp. Biochem. Physiol. Pt. A. Mol. Integr. Physiol. V. 132. № 2. P. 433–438. https://doi.org/10.1016/S1095-6433(02)00083-1
  32. Tseng Y.-C.,Hwang P.-P. 2008. Some insights into energy metabolism for osmoregulation in fish // Comp. Biochem. Physiol. Pt. C. Toxicol. Pharmacol. V. 148. № 4. P. 419–429. https://doi.org/10.1016/j.cbpc.2008.04.009

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).