Ранняя диагностика злокачественных новообразований кожи с помощью технологий искусственного интеллекта
- Авторы: Самохин С.О.1, Патрушев А.В.1, Акаева Ю.И.1, Парфёнов С.А.1, Кутелев Г.Г.1
-
Учреждения:
- Военно-медицинская академия имени С.М. Кирова
- Выпуск: Том 100, № 1 (2024)
- Страницы: 38-46
- Раздел: ОБЗОР ЛИТЕРАТУРЫ
- URL: https://ogarev-online.ru/0042-4609/article/view/254519
- DOI: https://doi.org/10.25208/vdv16746
- ID: 254519
Цитировать
Полный текст
Аннотация
В последнее десятилетие произошел значительный прогресс в сфере компьютерного анализа изображений и их распознавания, причем современные алгоритмы компьютерной диагностики не только догоняют, но и во многих аспектах превосходят человеческие способности. В основе этого прорыва лежит развитие глубоких сверточных нейронных сетей, которые дали новый импульс медицинской диагностике, в частности, онкологических заболеваний кожи. В данной работе был проведен анализ систем классификации кожных заболеваний по фотографии, разработанных с использованием алгоритмов, построенных на сверточных нейронных сетях глубокого обучения. Подобные методы, по различным данным, позволяют проводить автоматизированную диагностику кожных новообразований с высокой чувствительностью и специфичностью. В качестве основного объекта исследования было выбрано заболевание, которое требует более детального анализа графических изображений, — меланома кожи. Ранняя диагностика меланомы имеет огромное социально-экономическое значение, так как в данном случае существенно улучшается прогноз пациентов. Цель работы заключается в анализе результатов применения искусственного интеллекта (ИИ) в дерматологии, особенно для раннего обнаружения меланомы кожи. Поиск научных статей осуществлялся в базах данных PubMed, Scopus и eLIBRARY по ключевым словам: «онкологические заболевания кожи», «искусственный интеллект», «меланома», «дерматоскопия», «сверточные нейронные сети». Глубина поиска — 10 лет. В итоговый анализ попало 38 источников, где представлены результаты ряда современных исследований. Проанализированы и продемонстрированы преимущества методов ИИ для использования дерматологами. ИИ может оказать значительную помощь дерматологам в развитии навыков визуальной диагностики новообразований и повысить точность диагностики. Использование ИИ для обработки дерматоскопических данных в совокупности с анализом анамнестической и клинической информации из медицинской документации позволит снизить нагрузку на систему здравоохранения за счет правильно диагностированных доброкачественных опухолей кожи. Все это обещает оказать существенное воздействие на будущее развитие дерматовенерологии.
Ключевые слова
Полный текст
Открыть статью на сайте журналаОб авторах
Семён Олегович Самохин
Военно-медицинская академия имени С.М. Кирова
Автор, ответственный за переписку.
Email: dr.dokip@gmail.com
ORCID iD: 0009-0009-2964-3281
Россия, Санкт-Петербург
Александр Владимирович Патрушев
Военно-медицинская академия имени С.М. Кирова
Email: alexpat2@yandex.ru
ORCID iD: 0000-0002-6989-9363
д.м.н., доцент
Россия, Санкт-ПетербургЮлия Игоревна Акаева
Военно-медицинская академия имени С.М. Кирова
Email: Juliaakaeva@gmail.com
ORCID iD: 0009-0004-8727-0624
Россия, Санкт-Петербург
Сергей Александрович Парфёнов
Военно-медицинская академия имени С.М. Кирова
Email: sa.parfenov1988@yandex.ru
ORCID iD: 0000-0002-1649-9796
к.м.н.
Россия, Санкт-ПетербургГеннадий Геннадьевич Кутелев
Военно-медицинская академия имени С.М. Кирова
Email: gena08@yandex.ru
ORCID iD: 0000-0002-6489-9938
к.м.н.
Россия, Санкт-ПетербургСписок литературы
- Гаврилов Д.А., Закиров Э.И., Гамеева Е.В., Семенов В.Ю., Александрова О.Ю. Автоматизированная диагностика меланомы кожи на основе математической модели искусственной сверточной нейронной сети. Исследования и практика в медицине. 2018;5(3):110–116. [Gavrilov DA, Zakirov EI, Ganeeva EV, Semenov VYu, Alexandrova OYu. Automated skin melanoma diagnostics based on mathematical model of artificial convolutional neural network. Research’n Practical Medicine Journal. 2018;5(3):110–116. (In Russ.)] doi: 10.17709/2409-2231-2018-5-3-11
- Fujisawa Y, Otomo Y, Ogata Y, Nakamura Y, Fujita R, Ishitsuka Y, et al. Deep-learning-based, computer-aided classifier developed with a small dataset of clinical images surpasses board-certified dermatologists in skin tumour diagnosis. Br J Dermatol. 2019;180(2):373–381. doi: 10.1111/bjd.16924
- Мелерзанов А., Гаврилов Д. Диагностика меланомы кожи с помощью сверточных нейронных сетей глубокого обучения. Врач. 2018;29(6):31–33. [Melerzanov A, Gavrilov D. Melanoma diagnosis using convolutional neural networks of deep learning. Vrach. 2018;29(6):31–33. (In Russ.)] doi: 10.29296/25877305-2018-06-06
- Brinker TJ, Hekler A, Enk AH, Berking C, Haferkamp S, Hauschild A, et al. Deep neural networks are superior to dermatologists in melanoma image classification. Eur J Cancer. 2019;119:11–17. doi: 10.1016/j.ejca.2019.05.023
- Краюшкин П.В. Возможности искусственного интеллекта в диагностике онкологических заболеваний кожи. Косметика и медицина. 2018;3:90–99. [Krayushkin PV. Possibilities of artificial intelligence in diagnostics of oncologic skin diseases. Journal of Cosmetics & Medicine. 2018;3:90–99.] URL: www.cmjournal.ru
- Никитаев В.Г., Проничев А.Н., Тамразова О.Б., Сергеев В.Ю., Гуров Д.В., Зайцев С.М., и др. Сверточные нейронные сети в диагностике новообразований кожи. Безопасность информационных технологий. 2021;28(4):118–126. [Nikitaev VG, Pronichev AN, Tamrazova OB, Sergeev VYu, Gurov DV, Zaitsev SM, et al. Сonvolutional neural networks in the diagnosis of skin neoplasms. IT Security (Russia). 2021;28(4):118–126. (In Russ.)] doi: 10.26583/bit.2021.4.09
- Хабарова Р.И., Кулева С.А. Искусственный интеллект в диагностике доброкачественных новообразований кожи у пациентов детского возраста. Интеграция нейронной сети в мобильное приложение. Вопросы онкологии. 2022;68(6):820–826. [Khabarova RI, Kuleva SA. Artificial intelligence in the diagnosis of benign skin neoplasms in pediatric patients. Integration of neural network into mobile application. Voprosy onkologii. 2022;68(6):820–826. (In Russ.)] doi: 10.37469/0507-3758-2022-68-6-820-826
- Liu Y, Jain A, Eng C, Way DH, Lee K, Bui P, et al. A deep learning system for differential diagnosis of skin diseases. Nat Med. 2020;26(6):900–908. doi: 10.1038/s41591-020-0842-3
- Jones OT, Matin RN, van der Schaar M, Prathivadi Bhayankaram K, Ranmuthu CKI, Islam MS, et al. Artificial intelligence and machine learning algorithms for early detection of skin cancer in community and primary care settings: a systematic review. Lancet Digit Health. 2022;4(6):е466–е476. doi: 10.1016/S2589-7500(22)00023-1
- Wen D, Khan SM, Xu AJ, Ibrahim H, Smith L, Caballero J, et al. Characteristics of publicly available skin cancer image datasets: a systematic review. Lancet Digit Health. 2022;4(1):е64–е74. doi: 10.1016/s2589-7500(21)00252-1
- Stiff KM, Franklin MJ, Zhou Y, Madabhushi A, Knackstedt TJ. Artificial intelligence and melanoma: A comprehensive review of clinical, dermoscopic, and histologic applications. Pigment Cell Melanoma Res. 2022;35(2):203–211. doi: 10.1111/pcmr.13027
- Muñoz-López C, Ramírez-Cornejo C, Marchetti MA, Han SS, Del Barrio-Díaz P, Jaque A, et al. Performance of a deep neural network in teledermatology: a singlecentre prospective diagnostic study. J Eur Acad Dermatol Venereol. 2021;35(2):546–553. doi: 10.1111/jdv.16979
- Tschandl P, Rosendahl C, Akay BN, Argenziano G, Blum A, Braun RP, et al. Expert-level diagnosis of nonpigmented skin cancer by combined convolutional neural networks. JAMA Dermatol. 2019;155(1):58–65. doi: 10.1001/jamadermatol.2018.4378
- Dildar M, Akram S, Irfan M, Khan HU, Ramzan M, Mahmood AR, et al. Skin Cancer Detection: A Review Using Deep Learning Techniques. Int J Environ Res Public Health. 2021;18(10):5479. doi: 10.3390/ijerph18105479
- Du-Harpur X, Watt FM, Luscombe NM, Lynch MD. What is AI? Applications of artificial intelligence to dermatology. Br J Dermatol. 2020;183(3):423–430. doi: 10.1111/bjd.18880
- Haenssle HA, Fink C, Schneiderbauer R, Toberer F, Buhl T, Blum A, et al. Man against machine: diagnostic performance of a deep learning convolutional neural network for dermoscopic melanoma recognition in comparison to 58 dermatologists. Ann Oncol. 2018;29(8):1836–1842. doi: 10.1093/annonc/mdy166
- Lucius M, De All J, De All JA, Belvisi M, Radizza L, Lanfranconi M, et al. Deep neural frameworks improve the accuracy of general practitioners in the classification of pigmented skin lesions. Diagnostics (Basel). 2020;10(11):969. doi: .3390/diagnostics10110969
- Rivera SC, Liu X, Chan AW, Denniston AK, Calvert MJ. Guidelines for clinical trial protocols for interventions involving artificial intelligence: the SPIRIT-AI Extension. BMJ. 2020;370:m3210. doi: 10.1136/bmj.m3210
- Aggarwal P, Papay FA. Artificial intelligence image recognition of melanoma and basal cell carcinoma in racially diverse populations. J Dermatolog Treat. 2022;33(4):2257–2262. doi: 10.1080/09546634.2021.1944970
- Milton MAA. Automated Skin Lesion Classification Using Ensemble of Deep Neural Networks in ISIC 2018: Skin Lesion Analysis Towards Melanoma Detection Challenge. arXiv. 2019. arXiv:1901.10802. doi: 10.48550/arXiv.1901.10802
- Curiel-Lewandrowski С, Novoa RA, Berry E, et al. Artificial Intelligence Approach in Melanoma. In: Fisher D, Bastian B. (eds). Melanoma. New York, NY: Springer; 2019. doi: 10.1007/978-1-4614-7147-9_43
- Jojoa Acosta MF, Caballero Tovar LY, Garcia-Zapirain MB, Percybrooks WS. Melanoma Diagnosis Using Deep Learning Techniques on Dermatoscopic Images. BMC Med. Imaging. 2021;21(1):6. doi: 10.1186/s12880-020-00534-8
- Phillips M, Marsden H, Jaffe W, Matin RN, Wali GN, Greenhalgh J, et al. Assessment of Accuracy of an Artificial Intelligence Algorithm to Detect Melanoma in Images of Skin Lesions. JAMA Netw Open. 2019;2(10):1913436. doi: 10.1001/jamanetworkopen.2019.13436
- Mar VJ, Soyer HP. Artificial intelligence for melanoma diagnosis: how can we deliver on the promise? Ann Oncol. 2019;30(12):е1–е3. doi: 10.1093/annonc/mdy191
- Berlin SJ, John M. Particle Swarm Optimization with Deep Learning for Human Action Recognition. Multimed. Tools Appl. 2020;79:17349–17371. doi: 10.1007/s11042-020-08704-0
- AI Dermatologist. Skin Scanner. URL: https://ai-derm.com/
- Wells A, Patel S, Lee JB, Motaparthi K. Artificial intelligence in dermatopathology: Diagnosis, education, and research. J Cutan Pathol. 2021;48(8):1061–1068. doi: 10.1111/cup.13954
- Freeman K, Dinnes J, Chuchu N, Takwoingi Y, Bayliss SE, Matin RN, et al. Algorithm based smartphone apps to assess risk of skin cancer in adults: systematic review of diagnostic accuracy studies. BMJ. 2020;368:m127. doi: 10.1136/bmj.m127
- Jain A, Way D, Gupta V, Gao Y, de Oliveira Marinho G, Hartford J, et al. Development and assessment of an artificial intelligence-based tool for skin condition diagnosis by primary care physicians and nurse practitioners in teledermatology practices. JAMA Netw Open. 2021;4(4):e217249. doi: 10.1001/jamanetworkopen.2021.7249
- Guerrisi A, Falcone I, Valenti F, Rao M, Gallo E, Ungania S, et al. Artificial Intelligence and Advanced Melanoma: Treatment Management Implications. Cells. 2022;11(24):3965. doi: 10.3390/cells11243965
- Young AT, Xiong M, Pfau J, Keiser MJ, Wei ML. Artificial Intelligence in Dermatology: A Primer. J Invest Dermatol. 2020;140(8):1504–1512. doi: 10.1016/j.jid.2020.02.026
- Jutzi TB, Krieghoff-Henning EI, Holland-Letz T, Utikal JS, Hauschild A, Schadendorf D, et al. Artificial intelligence in skin cancer diagnostics: The patients’ perspective. Front Med (Lausanne). 2020;7:233. doi: 10.3389/fmed.2020.00233
- Dick V, Sinz C, Mittlböck M, Kittler H, Tschandl P. Accuracy of computer-aided diagnosis of melanoma: a meta-analysis. JAMA Dermatol. 2019;155(11):1291–1299. doi: 10.1001/jamadermatol.2019.1375
- MacLellan AN, Price EL, Publicover-Brouwer P, Matheson K, Ly TY, Pasternak S, et al. The use of noninvasive imaging techniques in the diagnosis of melanoma: a prospective diagnostic accuracy study. J Am Acad Dermatol. 2021;85(2):353–359. doi: 10.1016/j.jaad.2020.04.019
- Winkler JK, Sies K, Fink C, Toberer F, Enk A, Deinlein T, et al. Melanoma recognition by a deep learning convolutional neural network — performance in different melanoma subtypes and localizations. Eur J Cancer. 2020;127:21–29. doi: 10.1016/j.ejca.2019.11.020
- Phillips M, Greenhalgh J, Marsden H, Palamaras I. Detection of malignant melanoma using artificial intelligence: an observational study of diagnostic accuracy. Dermatol Pract Concept. 2019;10(1):2020011. doi: 10.5826/dpc.1001a11
- Ali IS, Mohamed MF, Mahdy YB. Data Augmentation for Skin Lesion Using Self-Attention Based Progressive Generative Adversarial Network. arXiv. 2019. arXiv:1910.11960. doi: 10.48550/arXiv.1910.11960
- Sevli O. A deep convolutional neural network-based pigmented skin lesion classification application and experts evaluation. Neural Computing and Applications. 2021;33(18):12039–12050. doi: 10.1007/s00521-021-05929-4
Дополнительные файлы
