Биотехнологии в дерматовенерологии: настоящее и будущее
- Авторы: Власова А.В.1, Мартынов А.А.2, Мартынова М.А.3
-
Учреждения:
- Первый Московский государственный медицинский университет имени И.М. Сеченова (Сеченовский Университет)
- Государственный научный центр дерматовенерологии и косметологии
- Тель-Авивский университет
- Выпуск: Том 100, № 4 (2024)
- Страницы: 31-41
- Раздел: ОБЗОР ЛИТЕРАТУРЫ
- URL: https://ogarev-online.ru/0042-4609/article/view/263385
- DOI: https://doi.org/10.25208/vdv16766
- ID: 263385
Цитировать
Полный текст
Аннотация
Одним из самых стремительно развивающихся научных направлений в настоящее время являются биотехнологии, которые в последнее десятилетие стали мощным оружием и помощником в диагностике, прогнозе и лечении ряда заболеваний, в том числе болезней кожи. В статье подробно освещены ключевые подразделы медицинских биотехнологий, применямых в дерматовенерологии, таких как генная терапия, молекулярная диагностика, фармакогеномика и генная (тканевая) инженерия. Подчеркивается потенциал применения биотехнологий в дерматовенерологии, который остается главной надеждой больных, страдающих заболеваниями кожи и подкожной клетчатки, а также врачей-дерматовенерологов.
Ключевые слова
Полный текст
Открыть статью на сайте журналаОб авторах
Анна Васильевна Власова
Первый Московский государственный медицинский университет имени И.М. Сеченова (Сеченовский Университет)
Автор, ответственный за переписку.
Email: avvla@mail.ru
ORCID iD: 0000-0002-7677-1544
SPIN-код: 8802-7325
кандидат медицинских наук
Россия, 119991, Москва, ул. Трубецкая, д. 8, стр. 2Андрей Александрович Мартынов
Государственный научный центр дерматовенерологии и косметологии
Email: aamart@mail.ru
ORCID iD: 0000-0002-5756-2747
SPIN-код: 2613-8597
доктор медицинских наук, профессор
Россия, МоскваМария Андреевна Мартынова
Тель-Авивский университет
Email: manmartyn@gmail.com
ORCID iD: 0009-0000-5377-1739
студентка
Израиль, Тель-АвивСписок литературы
- Pham PV. Medical Biotechnology: Techniques and Applications. In: Omics Technologies and Bio-engineering: Towards Improving Quality of Life. Academic Press; 2018. P. 449–69. doi: 10.1016/B978-0-12-804659-3.00019-1
- Bulcha JT, Wang Y, Ma H, Tai PWL, Gao G. Viral vector platforms within the gene therapy landscape. Signal Transduct Target Ther. 2021;6(1):53. doi: 10.1038/s41392-021-00487-6
- Alnasser SM. Review on mechanistic strategy of gene therapy in the treatment of disease. Gene. 2021;769:145246. doi: 10.1016/j.gene.2020.145246
- Guide SV, Gonzalez ME, Bağcı IS, Agostini B, Chen H, Feeney G, et al. Trial of Beremagene Geperpavec (B-VEC) for Dystrophic Epidermolysis Bullosa. N Engl J Med. 2022;387(24):2211–2219. doi: 10.1056/nejmoa2206663
- Dhillon S. Beremagene Geperpavec: First Approval. Drugs. 2023;83(12):1131–1135. doi: 10.1007/s40265-023-01921-5
- Krystal biotech. New Data on B-VEC and Dystrophic Epidermolysis Bullosa (DEB) Presented at the DEBRA International Conference; 2021.
- Ferrucci PF, Pala L, Conforti F, Cocorocchio E. Talimogene laherparepvec (T-VEC): An intralesional cancer immunotherapy for advanced melanoma. Cancers (Basel). 2021;13(6):1383. doi: 10.3390/cancers13061383
- Baum C, Kustikova O, Modlich U, Li Z, Fehse B. Mutagenesis and Oncogenesis by Chromosomal Insertion of Gene Transfer Vectors. Hum Gene Ther. 2006;17(3):253–263. doi: 10.1089/hum.2006.17.253
- Thomas CE, Ehrhardt A, Kay MA. Progress and problems with the use of viral vectors for gene therapy. Nat Rev Genet. 2003;4(5):346–358. doi: 10.1038/nrg1066
- Bessis N, GarciaCozar FJ, Boissier MC. Immune responses to gene therapy vectors: Influence on vector function and effector mechanisms. Gene Ther. 2004;11(Suppl 1):S10–7. doi: 10.1038/sj.gt.3302364
- Midoux P, Pichon C, Yaouanc JJ, Jaffrès PA. Chemical vectors for gene delivery: A current review on polymers, peptides and lipids containing histidine or imidazole as nucleic acids carriers. Br J Pharmacol. 2009;157(2):166–178. doi: 10.1111/j.1476-5381.2009.00288.x
- Wang M, Marepally SK, Vemula PK, Xu C. Inorganic Nanoparticles for Transdermal Drug Delivery and Topical Application. In: Nanoscience in Dermatology. Elsevier Inc.; 2016. P. 57–72. doi: 10.1016/B978-0-12-802926-8.00005-7
- Siu KS, Chen D, Zheng X, Zhang X, Johnston N, Liu Y, et al. Non-covalently functionalized single-walled carbon nanotube for topical siRNA delivery into melanoma. Biomaterials. 2014;35(10):3435–3442. doi: 10.1016/j.biomaterials.2013.12.079
- Desai PR, Marepally S, Patel AR, Voshavar C, Chaudhuri A, Singh M. Topical delivery of anti-TNFα siRNA and capsaicin via novel lipid-polymer hybrid nanoparticles efficiently inhibits skin inflammation in vivo. J Control Release. 2013;170(1):51–63. doi: 10.1016/j.jconrel.2013.04.021
- Bracke S, Carretero M, Guerrero-Aspizua S, Desmet E, Illera N, Navarro M, et al. Targeted silencing of DEFB4 in a bioengineered skin-humanized mouse model for psoriasis: Development of siRNA SECosome-based novel therapies. Exp Dermatol. 2014;23(3):199–201. doi: 10.1111/exd.12321
- Kim ST, Lee KM, Park HJ, Jin SE, Ahn WS, Kim CK. Topical delivery of interleukin-13 antisense oligonucleotides with cationic elastic liposome for the treatment of atopic dermatitis. J Gene Med. 2009;11(1):26–37. doi: 10.1002/jgm.1268
- Li J, Li X, Zhang Y, Zhou XK, Yang HS, Chen XC, et al. Gene therapy for psoriasis in the K14-VEGF transgenic mouse model by topical transdermal delivery of interleukin-4 using ultradeformable cationic liposome. J Gene Med. 2010;12(6):481–490. doi: 10.1002/jgm.1459
- Lewandowski KT, Thiede R, Guido N, Daniel WL, Kang R, Guerrero-Zayas MI, et al. Topically Delivered Tumor Necrosis Factor-α–Targeted Gene Regulation for Psoriasis. J Invest Dermatol. 2017;137(9):2027–2030. doi: 10.1016/j.jid.2017.04.027
- Zheng D, Giljohann DA, Chen DL, Massich MD, Wang XQ, Iordanov H, et al. Topical delivery of siRNA-based spherical nucleic acid nanoparticle conjugates for gene regulation. Proc Nat Acad Sci U S A. 2012;109(30):11975–11980. doi: 10.1073/pnas.1118425109/-/DCSupplemental
- Randeria PS, Seeger MA, Wang XQ, Wilson H, Shipp D, Mirkin CA, et al. siRNA-based spherical nucleic acids reverse impaired wound healing in diabetic mice by ganglioside GM3 synthase knockdown. Proc Natl Acad Sci U S A. 2015;112(18):5573–5578. doi: 10.1073/pnas.1505951112
- Yi X, Zhao G, Zhang H, Guan D, Meng R, Zhang Y, et al. MITF-siRNA formulation is a safe and effective therapy for human melasma. Mol Ther. 2011;19(2):362–371. doi: 10.1038/mt.2010.263
- Heydari Z, Peshkova M, Gonen ZB, Coretchi I, Eken A, Yay AH, et al. EVs vs. EVs: MSCs and Tregs as a source of invisible possibilities. J Mol Med (Berl). 2023;101(1–2):51–63. doi: 10.1007/s00109-022-02276-2
- Lo AC, Feldman SR. Polymerase chain reaction: Basic concepts and clinical applications in dermatology. J Am Acad Dermatol. 1994;30(2):250–260. doi: 10.1016/S0190-9622(94)70025-7
- Mania-Pramanik J, Donde UM, Maitra A. Use of polymerase chain reaction (PCR) for detection of Chlamydia trachomatis infection in cervical swab samples. Indian J Dermatol Venereol Leprol. 2001;67(5):246–250.
- Liu H, Rodes B, Chen CY, Steiner B. New tests for syphilis: Rational design of a PCR method for detection of Treponema pallidum in clinical specimens using unique regions of the DNA polymerase I gene. J Clin Microbiol. 2001;39(5):1941–1946. doi: 10.1128/JCM.39.5.1941-1946.2001
- Shafie MH, Antony Dass M, Ahmad Shaberi HS, Zafarina Z. Screening and confirmation tests for SARS-CoV-2: benefits and drawbacks. Beni Suef Univ J Basic Appl Sci. 2023;12(1):6. doi: 10.1186/s43088-023-00342-3
- D’Amico F, Skarmoutsou E, Stivala F. State of the art in antigen retrieval for immunohistochemistry. J Immunol Methods. 2009;341(1–2):1–18. doi: 10.1016/j.jim.2008.11.007
- Magaki S, Hojat SA, Wei B, So A, Yong WH. An introduction to the performance of immunohistochemistry. Methods Mol Biol. 2019;1897:289–298. doi: 10.1007/978-1-4939-8935-5_25
- Palit A, Inamadar AC. Immunohistochemistry: Relevance in dermatology. Indian J Dermatol. 2011;56(6):629–640. doi: 10.4103/0019-5154.91818
- Chatterjee D, Bhattacharjee R. Immunohistochemistry in dermatopathology and its relevance in clinical practice. Indian Dermatol Online J. 2018;9(4):234–244. doi: 10.4103/idoj.idoj_8_18
- Esposito R. What are the different detection methods for IHC? Enzo Life Sciences; 2019.
- King AD, Deirawan H, Klein PA, Dasgeb B, Dumur CI, Mehregan DR. Next-generation sequencing in dermatology. Front Med (Lausanne). 2023;10:2128404. doi: 10.3389/fmed.2023.1218404
- Qin D. Next-generation sequencing and its clinical application. Cancer Biol Med. 2019;16(1):4–10. doi: 10.20892/j.issn.2095-3941.2018.0055
- Sarig O, Sprecher E. The Molecular Revolution in Cutaneous Biology: Era of Next-Generation Sequencing. J Invest Dermatol. 2017;137(5):е79–е82. doi: 10.1016/j.jid.2016.02.818
- Gonzalez D, Fearfield L, Nathan P, Tanière P, Wallace A, Brown E, et al. BRAF mutation testing algorithm for vemurafenib treatment in melanoma: Recommendations from an expert panel. Br J Dermatol. 2013;168(4):700–707. doi: 10.1111/bjd.12248
- Todd P, Samaratunga IR, Pembroke A. Screening for glucose-6-phosphate dehydrogenase deficiency prior to dapsone therapy. Clin Exp Dermatol. 1994;19(3):217–218. doi: 10.1111/j.1365-2230.1994.tb01168.x
- Iznardo H, Roé E, Serra-Baldrich E, Puig L. Efficacy and Safety of JAK1 Inhibitor Abrocitinib in Atopic Dermatitis. Pharmaceutics. 2023;15(2):385. doi: 10.3390/pharmaceutics15020385
- Diasio RB, Offer SM. Testing for Dihydropyrimidine Dehydrogenase Deficiency to Individualize 5-Fluorouracil Therapy. Cancers (Basel). 2022;14(13):3207. doi: 10.3390/cancers14133207
- Mitra D, Chopra A, Saraswat N, Mitra B, Talukdar K, Agarwal R. Biologics in Dermatology: Off-Label Indications. Indian Dermatol Online J. 2020;11(3):319–327. doi: 10.4103/idoj.IDOJ_407_18
- Mpofu S, Fatima F, Moots RJ. Anti-TNF-α therapies: They are all the same (aren’t they?). Rheumatology. 2005;44(3):271–273. doi: 10.1093/rheumatology/keh483
- Atiqi S, Hooijberg F, Loeff FC, Rispens T, Wolbink GJ. Immunogenicity of TNF-Inhibitors. Front Immunol. 2020;11:312. doi: 10.3389/fimmu.2020.00312
- Hodi FS, Soiffer RJ. Interleukins. In: Encyclopedia of Cancer. 2nd ed. Academic Press; 2002. P. 523–35. doi: 10.1016/B0-12-227555-1/00110-6
- Sehgal VN, Pandhi D, Khurana A. Biologics in dermatology: An integrated review. Indian J Dermatol. 2014;59(5):425–441. doi: 10.4103/0019-5154.139859
- Gonçalves F, Freitas E, Torres T. Selective IL-13 inhibitors for the treatment of atopic dermatitis. Drugs Context. 2021;10:2021-1-7. doi: 10.7573/DIC.2021-1-7
- Yang K, Oak ASW, Elewski BE. Use of IL-23 Inhibitors for the Treatment of Plaque Psoriasis and Psoriatic Arthritis: A Comprehensive Review. Am J Clin Dermatol. 2021;22(2):173–192. doi: 10.1007/s40257-020-00578-0
- Batta S, Khan R, Zaayman M, Limmer A, Kivelevitch D, Menter A. IL-17 and -23 Inhibitors for the Treatment of Psoriasis. EMJ Allergy & Immunology. 2023; doi: 10.33590/emjallergyimmunol/10301362
- Nie T. Spesolimab in generalised pustular psoriasis flares: a profile of its use. Drugs & Therapy Perspectives. 2023;39:404–412. doi: 10.1007/s40267-023-01034-9
- Курбачева О.М., Галицкая М.А. Место омализумаба в терапии аллергических заболеваний. Медицинский совет. 2019;15:38–49. [Kurbacheva OM, Galitskaya MA. The place of Omalizumab in the treatment of allergic diseases. Meditsinskiy sovet = Medical Council. 2019;15:38–49. (In Russ.)] doi: 10.21518/2079-701x-2019-15-38-49
- Kara RO, Dikicier BS, Yaldiz M, Koku B, Çosansu NC, Solak B. Omalizumab treatment for chronic spontaneous urticaria: data from Turkey. Postepy Dermatol Alergol. 2022;39(4):704–707. doi: 10.5114/ada.2021.109081
- Khandelwal K, Jajoo V, Bajpai K, Madke B, Prasad R, Wanjari MB, et al. Rituximab in Pemphigus Vulgaris: A Review of Monoclonal Antibody Therapy in Dermatology. Cureus. 2023;15(6):e40734. doi: 10.7759/cureus.40734
- Кубанов А.А., Абрамова Т.В. Современные методы терапии истинной акатолитической пузырчатки. Вестник дерматологии и венерологии. 2014;90(4):19–27. [Kubanov AА, Abramova TV. Current methods of treatment of true acantholytic pemphigus. Vestnik Dermatologii i Venerologii. 2014;90(4):19–27. (In Russ.)] doi: 10.25208/0042-4609-2014-90-4-19-27
- Arin MJ, Engert A, Krieg T, Hunzelmann N. Anti-CD20 monoclonal antibody (rituximab) in the treatment of pemphigus. Br J Dermatol. 2005;153(3):620–625. doi: 10.1111/j.1365-2133.2005.06651.x
- Tarhini A, Lo E, Minor DR. Releasing the brake on the immune system: Ipilimumab in melanoma and other tumors. Cancer Biother Radiopharm. 2010;25(6):601–613. doi: 10.1089/cbr.2010.0865
- Kwok G, Yau TCC, Chiu JW, Tse E, Kwong YL. Pembrolizumab (Keytruda). Hum Vaccin Immunother. 2016;12(11):2777–89. doi: 10.1080/21645515.2016.1199310
- Sengupta A. Biological drugs: challenges to access. Penang: Third World Network; 2018. P. 20–5.
- Soliman M, Oredein O, Dass CR. Update on Safety and Efficacy of HPV Vaccines: Focus on Gardasil. Int J Mol Cell Med. 2021;10(2):101–113. doi: 10.22088/IJMCM.BUMS.10.2.101
- Heineman TC, Cunningham A, Levin M. Understanding the immunology of Shingrix, a recombinant glycoprotein E adjuvanted herpes zoster vaccine. Curr Opin Immunol. 2019;59:42–48. doi: 10.1016/J.COI.2019.02.009
- Carvalho T. Personalized anti-cancer vaccine combining mRNA and immunotherapy tested in melanoma trial. Nat Med. 2023;29(10):2379–2380. doi: 10.1038/d41591-023-00072-0
- Chocarro-Wrona C, López-Ruiz E, Perán M, Gálvez-Martín P, Marchal JA. Therapeutic strategies for skin regeneration based on biomedical substitutes. J Eur Acad Dermatol Venereol. 2019;33(3):484–496. doi: 10.1111/jdv.15391
- Cai R, Gimenez-Camino N, Xiao M, Bi S, Divito KA. Technological advances in three-dimensional skin tissue engineering. Reviews on Advanced Materials Science. 2023;62(1):20220289. doi: 10.1515/rams-2022-0289
- Reijnders CMA, Van Lier A, Roffel S, Kramer D, Scheper RJ, Gibbs S. Development of a Full-Thickness Human Skin Equivalent in Vitro Model Derived from TERT-Immortalized Keratinocytes and Fibroblasts. Tissue Eng Part A. 2015;21(17–18):2448–2459. doi: 10.1089/ten.tea.2015.0139
- Vidal Yucha SE, Tamamoto KA, Nguyen H, Cairns DM, Kaplan DL. Human Skin Equivalents Demonstrate Need for Neuro-Immuno-Cutaneous System. Adv Biosyst. 2019;3(1):e1800283. doi: 10.1002/adbi.201800283
- Wong R, Geyer S, Weninger W, Guimberteau JC, Wong JK. The dynamic anatomy and patterning of skin. Exp Dermatol. 2016;25(2):92–98. doi: 10.1111/exd.12832
- Ковылин Р.С., Алейник Д.А., Федюшкин И.Л. Современные пористые полимерные импланты: получение, свойства, применение. Высокомолекулярные соединения (серия С). 2021;63(1):33–53. [Kovylin RS, Aleinik DA, Fedyushkin IL. Modern porous polymer implants: preparation, properties, application. High molecular weight compounds. 2021;63(1):33–53. (In Russ.)] doi: 10.31857/s2308114721010039
- Bishop ES, Mostafa S, Pakvasa M, Luu HH, Lee MJ, Wolf JM, et al. 3-D bioprinting technologies in tissue engineering and regenerative medicine: Current and future trends. Genes Dis. 2017;4(4):185–195. doi: 10.1016/J.GENDIS.2017.10.002
- Bertassoni LE, Cecconi M, Manoharan V, Nikkhah M, Hjortnaes J, Cristino AL, et al. Hydrogel bioprinted microchannel networks for vascularization of tissue engineering constructs. Lab Chip. 2014;14(13):2202–2211. doi: 10.1039/c4lc00030g
- Kang HW, Lee SJ, Ko IK, Kengla C, Yoo JJ, Atala A. A 3D bioprinting system to produce human-scale tissue constructs with structural integrity. Nat Biotechnol. 2016;34(3):312–319. doi: 10.1038/nbt.3413
- Poldervaart MT, Gremmels H, Van Deventer K, Fledderus JO, Öner FC, Verhaar MC, et al. Prolonged presence of VEGF promotes vascularization in 3D bioprinted scaffolds with defined architecture. J Control Release. 2014;184(1):58–66. doi: 10.1016/j.jconrel.2014.04.007
- Rice JJ, Martino MM, De Laporte L, Tortelli F, Briquez PS, Hubbell JA. Engineering the Regenerative Microenvironment with Biomaterials. Adv Healthc Mater. 2013;2(1):57–71. doi: 10.1002/adhm.201200197
- Hinton TJ, Jallerat Q, Palchesko RN, Park JH, Grodzicki MS, Shue HJ, et al. Three-dimensional printing of complex biological structures by freeform reversible embedding of suspended hydrogels. Sci Adv. 2015;1(9):e1500758. doi: 10.1126/sciadv.1500758
- Murphy SV., De Coppi P, Atala A. Opportunities and challenges of translational 3D bioprinting. Nat Biomed Eng. 2020;4(4):370–380. doi: 10.1038/s41551-019-0471-7
- Nathoo R, Howe N, Cohen G. Skin Substitutes An Overview of the Key Players in Wound Management. Skin substitutes: an overview of the key players in wound management. 2014;7(10):44–48.
- Cervelli V, Brinci L, Spallone D, Tati E, Palla L, Lucarini L, et al. The use of MatriDerm® and skin grafting in post-traumatic wounds. Int Wound J. 2011;8(4):400–405. doi: 10.1111/j.1742-481X.2011.00806.x
- Zaulyanov L, Kirsner RS. A review of a bi-layered living cell treatment (Apligraf® ) in the treatment of venous leg ulcers and diabetic foot ulcers. Clin Interv Aging. 2007;2(1):93–98. doi: 10.2147/ciia.2007.2.1.93
- Gibson ALF, Holmes JH, Shupp JW, Smith D, Joe V, Carson J, et al. A phase 3, open-label, controlled, randomized, multicenter trial evaluating the efficacy and safety of StrataGraft® construct in patients with deep partial-thickness thermal burns. Burns. 2021;47(5):1024–1037. doi: 10.1016/j.burns.2021.04.021
- Hart CE, Loewen-Rodriguez A, Lessem J. Dermagraft: Use in the Treatment of Chronic Wounds. Adv Wound Care (New Rochelle). 2012;1(3):138–141. doi: 10.1089/wound.2011.0282
- Ehrenreich M, Ruszczak Z. Update on Tissue-Engineered Biological Dressings. Tissue Eng. 2006;12(9):2407–2424. doi: 10.1089/ten.2006.12.2407
- Мелешина А.В., Быстрова А.В., Роговая О.С., Воротеляк Е.А., Васильев А.В., Загайнова Е.В. Тканеинженерные конструкты кожи и использовние стволовых клеток для создания кожных эквивалентов (обзор). СТМ. 2017;9(1):198–218. [Meleshina AV, Bystrova AS, Rogovaya OS, Vorotelyak EA, Vasiliev AV, Zagaynova EV. Tissue-engineered skin constructs and application of stem cells for creation of skin equivalents (Review). Sovremennye Tehnologii v Medicine. 2017;9(1):198–218. (In Russ.)] doi: 10.17691/stm2017.9.1.24
- Карамова А.Э., Кубанов А.А., Воротеляк Е.А., Роговая О.С., Чикин В.В., Нефедова М.А., и др. Эффективность живого эквивалента кожи в терапии врожденного буллезного эпидермолиза. Вестник дерматологии и венерологии. 2023;99(6):29–36. [Karamova AE, Kubanov AA, Vorotelyak EA, Rogovaya OS, Chikin VV, Nefedova MA, et al. Efficacy of human living skin equivalent in the treatment of inherited epidermolysis bullosa. Vestnik Dermatologii i Venerologii. 2023;99(6):29–36. (In Russ.)] doi: 10.25208/vdv16249
- Min JH, Yun IS, Lew DH, Roh TS, Lee WJ. The use of Matriderm and autologous skin graft in the treatment of full thickness skin defects. Arch Plast Surg. 2014;41(4):330–336. doi: 10.5999/aps.2014.41.4.330
- Waltz E. Cosmetics: when biotech is better than nature. Nat Biotechnol. 2022;40(5):626–628. doi: 10.1038/s41587-022-01318-x
Дополнительные файлы
