Predictive model and classification for psoriatic arthritis risk assessment for Russian patients with psoriasis (on registry data)

封面

如何引用文章

全文:

详细

Background. Psoriatic arthritis risk prediction and early detection in patients with psoriasis may help prevent irreversible musculoskeletal changes and improve patients’ outcomes.

Aims. To develop and validate predictive model for psoriatic arthritis risk assessment and classification for patients with moderate-to-severe psoriasis based on demographic and clinical characteristics.

Materials and methods. Data of psoriasis patient registry of Russian Society of Dermatovenereologists and Cosmetologists was analyzed. Significant differences between independent variables of interest among patients with and without psoriatic arthritis were determined by means of χ2-test or Mann–Witney test. Predictive models were developed stepwise by means of logistic regression analysis. Independent variables of low significance were excluded from the model. Regression coefficients were considered significant if p < 0.05. The optimal cut-off value was derived from ROC-analysis. The model performance was evaluated by calculation of AUC, sensitivity and specificity on training and test datasets. Finally, adjusted regression coefficients, AUC, sensitivity and specificity were derived for pooled data.

Results. Training sample included 3245 patients with psoriasis, 920 of them had diagnosis of psoriatic arthritis. The final predictive model included five significant predictors: psoriasis duration, medical history of psoriatic erythroderma, family history of psoriatic arthritis, arterial hypertension, and fatty liver. All regression coefficients were highly significant (p < 0.001). The AUC of prediction model adjusted on pooled data was 0,7473, sensitivity 70%, specificity — 66% for cut-off value 0.212.

Conclusions. Developed predictive model for risk assessment of psoriatic arthritis may contribute to its earlier detection in patients with psoriasis taking into account the degree of influence of significant predictors. The proposed classification may be used to discriminate patients at higher risk of psoriatic arthritis.

作者简介

Elena Bogdanova

State Research Center of Dermatovenereology and Cosmetology

编辑信件的主要联系方式.
Email: onama@mail.ru
ORCID iD: 0000-0002-0662-2682
SPIN 代码: 6372-2237
Scopus 作者 ID: 57205267691

MD, Cand. Sci. (Med.)

俄罗斯联邦, 3 bldg 6 Korolenko street, 107076 Moscow

参考

  1. Coates LC, Helliwell PS. Psoriatic arthritis: state of the art review. Clin Med (Lond). 2017;17(1):65–70. doi: 10.7861/clinmedicine.17-1-65
  2. Scher JU, Ogdie A, Merola JF, Ritchlin C. Preventing psoriatic arthritis: focusing on patients with psoriasis at increased risk of transition. Nat Rev Rheumatol. 2019;15(3):153–166. doi: 10.1038/s41584-019-0175-0
  3. Lee LT, Yang HC, Nguyen PA, Muhtar MS, Li YJ. Machine Learning Approaches for Predicting Psoriatic Arthritis Risk Using Electronic Medical Records: Population-Based Study. J Med Internet Res. 2023;25:e39972. doi: 10.2196/39972
  4. Кубанов А.А., Богданова Е.В. Эпидемиология псориаза в Российской Федерации (по данным регистра). Вестник дерматологии и венерологии. 2022;98(1):33–41 [Kubanov AA, Bogdanova EV. Epidemiology of psoriasis in the Russian Federation: according to the patient registry. Vestnik dermatologii i venerologii. 2022;98(1):33–41. (In Russ.)] doi: 10.25208/vdv1268
  5. Kabacoff RI. R in Action: Data Analysis and Graphics with R. Shelter Island: Manning; 2011. 447 p. ISBN 9781935182399
  6. Yan D, Ahn R, Leslie S, Liao W. Clinical and Genetic Risk Factors Associated with Psoriatic Arthritis among Patients with Psoriasis. Dermatol Ther (Heidelb). 2018;8(4):593–604. doi: 10.1007/s13555-018-0266-x
  7. Chen Z, Wang Y, Lan X, Yang M, Ding L, Li G, et al. Nomogram for accurate and quantitative prediction of the risk of psoriatic arthritis in Chinese adult patients with moderate and severe plaque psoriasis. Eur J Dermatol. 2021;31(4):499–507. doi: 10.1684/ejd.2021.4095
  8. Wang Y, Zhang L, Yang M, Cao Y, Zheng M, Gu Y, et al. Development of a Predictive Model for Screening Patients with Psoriasis at Increased Risk of Psoriatic Arthritis. Dermatol Ther (Heidelb). 2022;12(2):419–433. doi: 10.1007/s13555-021-00663-0
  9. Liu P, Kuang Y, Ye L, Peng C, Chen W, Shen M, et al. Predicting the Risk of Psoriatic Arthritis in Plaque Psoriasis Patients: Development and Assessment of a New Predictive Nomogram. Front Immunol. 2022;12:740968. doi: 10.3389/fimmu.2021.740968
  10. Ogdie A, Harrison RW, McLean RR, Lin TC, Lebwohl M, Strober BE, et al. Prospective cohort study of psoriatic arthritis risk in patients with psoriasis in a real-world psoriasis registry. J Am Acad Dermatol. 2022;87(6):1303–1311. doi: 10.1016/j.jaad.2022.07.060
  11. Богданова Е.В. Псориатическая эритродермия: сравнительная характеристика пациентов и ассоциация с псориатическим артритом. Вестник дерматологии и венерологии. 2022;98(6):73–80 [Bogdanova EV. Psoriatic erythroderma: comparative patient profile and association with psoriatic arthritis. Vestnik dermatologii i venerologii. 2022;98(6):73–80. (In Russ.)] doi: 10.25208/vdv1328
  12. Кубанов А.А., Богданова Е.В. Что такое регистры пациентов и зачем они нужны (на примере регистров пациентов с псориазом). Вестник Российской академии медицинских наук. 2021;76(2):177–186 [Kubanov AA, Bogdanova EV. What are patient registries and why are they needed: (through a number of examples of psoriasis registries). Vestnik Rossijskoj akademii medicinskih nauk. 2021;76(2):177–186. (In Russ.)] doi: 10.15690/vramn1454. https://doi.org/10.25208/vdv5711

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. ROC-curve for prediction model

下载 (75KB)

版权所有 © Bogdanova E.V., 2023

Creative Commons License
此作品已接受知识共享署名-非商业性使用 4.0国际许可协议的许可。

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».