Narrow-band phototherapy in the treatment of atopic dermatitis: mechanisms of action, methodology of implementation

封面

如何引用文章

全文:

详细

Phototherapy is widely used to treat various chronic skin diseases. One of the most effective methods of treatment is narrow-band medium-wave ultraviolet radiation with a wavelength of 311 nm (UVB-311). UVB-311 is used for such immune-mediated diseases as atopic dermatitis, psoriasis, vitiligo, mycosis fungoides and others. Despite the fact that the method was developed more than 30 years ago, the exact mechanism of its therapeutic action remains insufficiently studied. To date, most of the effects of UVB-311 are explained by its effect on the immune cells of the skin. This review examines data on the effects on the main molecular targets, including T-lymphocytes, keratinocytes, Langerhans cells, cytokine profile, epidermal barrier proteins. Data on the features of the pathogenetic effect of UVB-311 on the immune mechanisms of pathogenesis in atopic dermatitis were obtained. The issues of dosing by determining the minimum erythemic dose (MED) or skin phototype, methodology of procedures are discussed. Prospects for further study of photobiological aspects of UVB-311 action are determined.

作者简介

Maryanna Zhilova

State Research Center of Dermatovenereology and Cosmetology

编辑信件的主要联系方式.
Email: zhilova@cnikvi.ru
ORCID iD: 0000-0003-2545-2129
SPIN 代码: 6103-0456

MD, Dr. Sci. (Med.)

俄罗斯联邦, Korolenko str., 3, bldg 6, 107076, Moscow

Pavel Gorodnichev

Nizhny Novgorod Branch of the State Scientific Center of Dermatovenereology and Cosmetology

Email: gorpav@icloud.com
ORCID iD: 0000-0001-5989-7156
俄罗斯联邦, Kovalikhinskaya str., 49g, 603006, Nizhny Novgorod

参考

  1. Weidinger S, Beck, L, Bieber T, Kabashima К, Irvine A.D. Atopic dermatitis. Nat. Rev. Dis. Primers Nat Rev Dis Primer. 2018;4(1):1. doi: 10.1038/s41572-018-0001-z
  2. Bieber T. How to define atopic dermatitis? Dermatol Clin. 2017;35(3):275–281. doi: 10.1016/j.det.2017.02.001.
  3. Hay RJ, Johns NE, Williams HC, Bolliger IW, Dellavalle RP, Margolis DJ, et al. The global burden of skin disease in 2010: an analysis of the prevalence and impact of skin conditions. J Invest Dermatol. 2014;134(6):1527–1534. doi: 10.1038/jid.2013.446
  4. Deckers IA, McLean S, Linssen S, Mommers M, van Schayck CP, Sheikh A. Investigating international time trends in the incidence and prevalence of atopic eczema 1990-2010: a systematic review of epidemiological studies. PLoS One. 2012;7:e39803. doi: 10.1371/journal.pone.0039803
  5. Waldman AR, Ahluwalia J, Udkoff J, Borok JF, Eichenfield LF. Atopic Dermatitis. Pediatr Rev. 2018;39(4):180–193. doi: 10.1542/pir.2016-0169
  6. Weidinger S, Novak N. Atopic dermatitis. Lancet. 2016;387(10023):1109–1122. doi: 10.1016/S0140-6736(15)00149-X
  7. Drucker AM, Wang AR, Qureshi AA. Research gaps in quality of life and economic burden of atopic dermatitis: the National Eczema Association burden of disease audit. JAMA Dermatol. 2016;152(8):873–874. doi: 10.1001/jamadermatol.2016.1978
  8. Brown SJ, McLean WH. One remarkable molecule: filaggrin. J Invest Dermatol. 2012;132(3 Pt 2):751–762. doi: 10.1038/jid.2011.393
  9. Otsuka A, Nomura T, Rerknimitr P, Seidel JA, Honda T, Kabashima K. The interplay between genetic and environmental factors in the pathogenesis of atopic dermatitis. Immunol Rev. 2017;278(1):246–262. doi: 10.1111/imr.12545
  10. Addor FA, Takaoka R, Rivitti EA, Aoki V. Atopic dermatitis: correlation between non-damaged skin barrier function and disease activity. Int J Dermatol . 2012;51(6):672–676. doi: 10.1111/j.1365-4632.2011.05176.x
  11. Тot JE, van der Feltz WT, Hennekam M, van Belkom A, van Buuren EJ, Pacman S. Prevalence and chances of Staphylococcus aureus in atopic dermatitis: a systematic review and meta-analysis. Br J Dermatol. 2016;175(4):687–695. doi: 10.1111/bjd.14566
  12. Jinnestål CL, Belfrage E, Bäck O, Schmidtchen A, Sonesson A. Violation of the skin barrier correlates with colonization of Staphylococcus aureus and sensitization to skin microbial antigens in adult patients with atopic dermatitis. Int J Dermatol. 2014;53(1):27–33. doi: 10.1111/ijd.12198
  13. Балаболкин И.И., Булгакова В.А., Елисеева Т.И. Атопический дерматит у детей: иммунологические аспекты патогенеза и терапии. Педиатрия. 2017.96.2:128–135. [Balabolkin II, Bulgakova VA, Eliseeva TI. Atopicheskij dermatit u detej: immunologicheskie aspekty patogeneza i terapii. Pediatrija. 2017.96.2:128–135 (In Russ.)]
  14. Sabat R, Wolk K, Loyal L, Döcke WD, Ghoreschi K. T cell pathology in skin inflammation. Semin Immunopathol. 2019;41(3):359–377. doi: 10.1007/s00281-019-00742-7
  15. Pérez-Ferriols A, Aranegui B, Pujol-Montcusí JA, Martín-Gorgojo A, Campos-Domínguez M, Feltes RA, et al. Phototherapy in atopic dermatitis: a systematic review of the literature. Actas Dermosifiliogr. 2015;106(5):387–401. English, Spanish. doi: 10.1016/j.ad.2014.12.017
  16. Krueger JG, Wolfe JT, Nabeya RT, Vallat VP, Gilleaudeau P, Heftler NS, et al. Successful ultraviolet B treatment of psoriasis is accompanied by a reversal of keratinocyte pathology and by selective depletion of intraepidermal T cells. J Exp Med. 1995;182(6):2057–2068. doi: 10.1084/jem.182.6.2057.
  17. Schade N, Esser C, Krutmann J. Ultraviolet B radiation-induced immunosuppression: molecular mechanisms and cellular alterations. Photochem Photobiol Sci. 2005;4(9):699–708. doi: 10.1039/b418378a
  18. Novák Z, Bérces A, Rontó G, Pállinger E, Dobozy A, Kemény L. Efficacy of different UV-emitting light sources in the induction of T-cell apoptosis. Photochem Photobiol. 2004;79(5):434–439. doi: 10.1562/ra-003r.1
  19. Kasahara S, Aizawa K, Okamiya M, Kazuno N, Mutoh S, Fugo H, Cooper EL, Wago H. UVB irradiation suppresses cytokine production and innate cellular immune functions in mice. Cytokine. 2001;14(2):104–111. doi: 10.1006/cyto.2001.0849
  20. Sethi G, Sodhi A. Role of p38 mitogen-activated protein kinase and caspases in UV-B-induced apoptosis of murine peritoneal macrophages. Photochem Photobiol. 2004;79:48–54.
  21. Duthie MS, Kimber I, Norval M. The effects of ultraviolet radiation on the human immune system. Br J Dermatol. 1999;140(6):995–1009. doi: 10.1046/j.1365-2133.1999.02898.x
  22. Wenk J, Brenneisen P, Meewes C, et al. UV-induced oxidative stress and photoaging. Curr Probl Dermatol. 2001;29:83–94. doi: 10.1159/000060656.
  23. Schweintzger N, Gruber-Wackernagel A, Reginato E, et al. Levels and function of regulatory T cells in patients with polymorphic light eruption: relation to photohardening. Br J Dermatol. 2015;173(2):519–526. doi: 10.1111/bjd.13930
  24. Schindl A, Klosner G, Hönigsmann H, Jori G, Calzavara-Pinton PC, Trautinger F. Flow cytometric quantification of UV-induced cell death in a human squamous cell carcinoma-derived cell line: dose and kinetic studies. J Photochem Photobiol B. 1998;44(2):97–106. doi: 10.1016/s1011-1344(98)00127-4
  25. Aufiero BM, Talwar H, Young C, Krishnan M, Hatfield JS, Lee HK, Wong HK, Hamzavi I, Murakawa GJ. Narrow-band UVB induces apoptosis in human keratinocytes. J Photochem Photobiol B. 2006;82(2):132–139. doi: 10.1016/j.jphotobiol.2005.08.011
  26. Luo S, Peng Z, Zheng Y, Zhang L, Feng Y, Wang G. Synergistic effects of acitretin and narrow-band UVB on inducing the expression of heparin-binding epidermal-growth-factor-like growth factor in normal human keratinocytes. Arch. Dermatol. Res. 2007;299(8):409–413. doi: 10.1007/s00403-007-0768-3
  27. Reich A, Lehmann B, Meurer M, Muller DJ. Structural alterations provoked by narrow-band ultraviolet B in immortalized keratinocytes: assessment by atomic force microscopy. Exp Dermatol. 2007;16(12):1007–1015. doi: 10.1111/j.1600-0625.2007.00623.x
  28. Reich A, Meurer M, Viehweg A, Muller DJ. Narrow-band UVB-induced externalization of selected nuclear antigens in keratinocytes: implications for lupus erythematosus pathogenesis. Photochem Photobiol. 2009;85(1):1–7. doi: 10.1111/j.1751-1097.2008.00480.x
  29. Reich A, Schwudke D, Meurer M, Lehmann B, Shevchenko A. Lipidome of narrow-band ultraviolet B irradiated keratinocytes shows apoptotic hallmarks. Exp Dermatol. 2010;19(8):e103-10. doi: 10.1111/j.1600-0625.2009.01000.x
  30. Gloor M, Scherotzke A. Age dependence of ultraviolet light-induced erythema following narrow-band UVB exposure. Photodermatol. Photoimmunol. Photomed 2002;18(3):121–126. doi: 10.1034/j.1600-0781.2002.00756.x.
  31. Тjioe, M.; Smiths, T.; van de Kerkhof, P.C.M.; Geritsen, M.J.P. The differential effect of broad band vs. narrow-band UVB with respect to photodamage and cutaneous inflammation. Exp. Dermatol 2003;12(6):729–733. doi: 10.1111/j.0906-6705.2003.00057.x.
  32. Luo S, Peng Z, Zheng Y, Zhang L, Feng Y, Wang G. Synergistic effects of acitretin and narrow-band UVB on inducing the expression of heparin-binding epidermal-growth-factor-like growth factor in normal human keratinocytes. Arch. Dermatol. Res. 2007;299(8):409–413. doi: 10.1007/s00403-007-0768-3
  33. Morita A, Werfel T, Stege H, Ahrens C, Karmann K, Grewe M, et al. Evidence that singlet oxygen-induced human T helper cell apoptosis is the basic mechanism of ultraviolet-A radiation phototherapy. J Exp Med. 1997;186(10):1763–1768. doi: 10.1084/jem.186.10.1763
  34. Tintle S, Shemer A, Suбrez-Fariсas M, Fujita H, Gilleaudeau P, Sullivan-Whalen M, et al. Reversal of atopic dermatitis with narrow-band UVB phototherapy and biomarkers for therapeutic response. J Allergy Clin Immunol. 2011;128(3):583-93.e1-4. doi: 10.1016/j.jaci.2011.05.042
  35. Mathias S, Pena LA, Kolesnick RN. Signal transduction of stress via ceramide. Biochem. J. 1998;335 (Pt 3)(Pt 3):465–480. doi: 10.1042/bj3350465.
  36. Wefers H, Melnik BC, Flür M, Bluhm C, Lehmann P, Plewig G. Influence of UV irradiation on the composition of human stratum corneum lipids. J Invest Dermatol. 1991;96(6):959–962. doi: 10.1111/1523-1747.ep12476124
  37. Reich A, Mędrek K. Effects of narrow band UVB (311 nm) irradiation on epidermal cells. Int J Mol Sci. 2013;14(4):8456–8466. doi: 10.3390/ijms14048456
  38. Faergemann J, Larkö O. The effect of UV-light on human skin microorganisms. Acta Derm Venereol. 1987;67(1):69–72.
  39. Gambichler T, Skrygan M, Tomi NS, Altmeyer P, Kreuter A. Changes of antimicrobial peptide mRNA expression in atopic eczema following phototherapy. Br J Dermatol. 2006;155:1275–1278. doi: 10.1111/j.1365-2133.2006.07481.x
  40. el-Ghorr AA, Norval M, Lappin MB, Crosby JC. The effect of chronic low-dose UVB radiation on Langerhans cells, sunburn cells, urocanic acid isomers, contact hypersensitivity and serum immunoglobulins in mice. Photochem Photobiol. 1995;62(2):326–332. doi: 10.1111/j.1751-1097.1995.tb05276.x
  41. Taguchi K, Fukunaga A, Ogura K, Nishigori C. The role of epidermal Langerhans cells in NB-UVB-induced immunosuppression. Kobe J Med Sci. 2013;59(1):E1-9.
  42. Clydesdale GJ, Dandie GW, Muller HK. Ultraviolet light induced injury: Immunological and inflammatory effects. Immunol. Cell Biol. 2001;79:547–568. doi: 10.1046/j.1440-1711.2001.01047.x
  43. Svobodova A, Walterova D, Vostalova J. Ultraviolet light induced alteration to the skin. Biomed. Pap.2006; 150(1):25–38. doi: 10.5507/bp.2006.003.
  44. Amatiello H, Martin CJ. Ultraviolet phototherapy: Review of options for cabin dosimetry and operation. Phys. Med. Biol. 2006;51:299–309. doi: 10.1088/0031-9155/51/2/008.3
  45. Moseley H, Allan D, Amatiello H, Coleman A, du Peloux Menagé H, Edwards C, Exton LS, Ferguson J, Garibaldinos T, Martin C, Mohd Mustapa MF. Guidelines on the measurement of ultraviolet radiation levels in ultraviolet phototherapy: report issued by the British Association of Dermatologists and British Photodermatology Group 2015. Br J Dermatol. 2015;173(2):333–350. doi: 10.1111/bjd.13937
  46. Taylor DK, Anstey AV, Coleman AJ, Diffey BL, Farr PM, Ferguson J, et al; British Photodermatology Group. Guidelines for dosimetry and calibration in ultraviolet radiation therapy: a report of a British Photodermatology Group workshop. Br J Dermatol. 2002;146(5):755–763. doi: 10.1046/j.1365-2133.2002.04740.x
  47. Lock-Andersen J, Wulf HC. Threshold level for measurement of UV sensitivity: reproducibility of phototest. Photodermatol Photoimmunol Photomed 1996;12(4):154–161. doi: 10.1111/j.1600-0781.1996.tb00192.x
  48. Fitzpatrick TB. The validity and practicality of sun-reactive skin types I through VI. Arch Dermatol 1988;124:869–871.
  49. Alora MB, Taylor CR. Narrow-band (311 nm) UVB phototherapy: an audit of the first year’s experience at the Massachusetts General Hospital. Photodermatol Photoimmunol Photomed 1997;13(3):82–84. doi: 10.1111/j.1600-0781.1997.tb00118.x
  50. Carretero-Mangolis C, Lim HW. Correlation between skin types and minimal erythema dose in narrowband UVB (TL-01) phototherapy. Photodermatol Photoimmunol Photomed 2001;17(5):244–246. doi: 10.1034/j.1600-0781.2001.170508.x
  51. Henriksen M, Na R, Agren MS, Wulf HC. Minimal erythema dose after multiple UV exposures depends on pre-exposure skin pigmentation. Photodermatol Photoimmunol Photomed. 2004;20(4):163–169. doi: 10.1111/j.1600-0781.2004.00104.x
  52. Ravnbak MH, Philipsen PA, Wulf HC. The minimal melanogenesis dose/minimal erythema dose ratio declines with increasing skin pigmentation using solar simulator and narrowband ultraviolet B exposure. Photodermatol Photoimmunol Photomed 2010;26(3):133–137. doi: 10.1111/j.1600-0781.2010.00508.x
  53. Stern RS, Momtaz K. Skin typing for assessment of skin cancer risk and acute response to UV-B and oral methoxsalen photochemotherapy. Arch Dermatol 1984;120:869–873.
  54. Gordon PM, Saunders PJ, Diffey BL, Farr PM. Phototesting prior to narrowband (TL-01) ultraviolet B phototherapy. Br J Dermatol. 1998;139(5):811–814. doi: 10.1046/j.1365-2133.1998.02505.x
  55. Cox NH, Farr PM, Diffey BL. A comparison of the dose-response relationship for psoralen-UVA erythema and UVB erythema. Arch Dermatol 1989;125:1653–1657.
  56. Waterston K, Naysmith L, Rees JL. Physiological variation in the erythemal response to ultraviolet radiation and photoadaptation. J Invest Dermatol 2004;123(5):958–964. doi: 10.1111/j.0022-202X.2004.23411.x
  57. Leslie KS , Lodge E, Garioch JJ. A comparison of narrowband (TL-01) UVB-induced erythemal response at different body sites. Clin Exp Dermatol 2005;30(4):337–339. doi: 10.1111/j.1365-2230.2005.01845.x
  58. Wulf HC, Heydenreich J, Philipsen PA. Variables in full-body ultraviolet B treatment of skin diseases. Photodermatol Photoimmunol Photomed 2010;26(3):165–169. doi: 10.1111/j.1600-0781.2010.00505.x
  59. Clarkson DM, Franks L. The use of a simulated body shape for determination of patient dosimetry within whole body ultraviolet treatment cabinets. Phys Med Biol 2006;51(4):N51-8. doi: 10.1088/0031-9155/51/4/N01.
  60. Diffey BL, Harrington TR, Davis A. The anatomical distribution of ultraviolet radiation in photochemotherapy. Phys Med Biol 1977;22:1014–1016.
  61. Grimes DR, Martin CJ, Phanco G. Investigations of cabin design in UV phototherapy. Med Phys 2012;39(6):3019–3025. doi: 10.1118/1.4711812
  62. Kane R, Sell H. Revolution in Lamps: A Chronicle of 50 Years of Progress. Lilburn, GA: Fairmont Press, 2001.
  63. Ibbotson SH, Bilsland D, Cox NH et al. An update and guidance on narrowband ultraviolet B phototherapy: a British Photodermatology Group Workshop Report. Br J Dermatol 2004;151(2):283–297. doi: 10.1111/j.1365-2133.2004.06128.x
  64. Lynch M, Carroll F, Kavanagh A, Honari B, Collins P. Comparison of a semiautomated hand-held device to test minimal erythema dose before narrowband ultraviolet B phototherapy with the conventional method using matched doses J Eur Acad Dermatol Venereol. 2014;28(12):1696–1700. doi: 10.1111/jdv.12371.
  65. Macfarlane L, Bhoyrul B, Ibbotson S, Dawe R. Practice when minimal phototoxic and minimal erythema doses are not determinable. Photodermatology, Photoimmunology & Photomedicine/ 2015:31(4);224–226. doi: 10.1111/phpp.12172
  66. Hofer A, Fink-Puches R, Kerl H, Wolf P. Comparison of phototherapy with near vs. far erythemogenic doses of narrow-band ultraviolet B in patients with psoriasis. Br J Dermatol. 1998;138(1):96–100. doi: 10.1046/j.1365-2133.1998.02032.x.
  67. Drummond A, Torley D, Jamieson CA, Bilsland D. Narrowband ultraviolet B for psoriasis: ‘to MED or not to MED’, that is the question [abstract]. Br J Dermatol. 2003;149(suppl 64):2.
  68. Rajpara S, White M. Impact of minimal erythema dose (MED) testing on TL01 treatment: a prospective study [abstract]. British Photodermatology Group: Summaries of Papers. Br J Dermatol. 2007;157(suppl 1): 134. doi: 10.1111/j.1365-2133.2007.07852.x
  69. ten Berge O, van Weelden H, Bruijnzeel-Koomen CA, de Bruin-Weller MS, Sigurdsson V. Throwing a light on photosensitivity in atopic dermatitis: a retrospective study. Am J Clin Dermatol. 2009;10(2):119–123. doi: 10.2165/00128071-200910020-00004.
  70. Tajima T, Ibe M, Matsushita T, Kamide R. A variety of skin responses to ultraviolet irradiation in patients with atopic dermatitis. J Dermatol Sci. 1998; 17(2):101–107. doi: 10.1016/s0923-1811(97)00080-7
  71. Dawe RS, Cameron HM, Yule S, Ibbotson SH, Moseley HH, Ferguson J. A randomized comparison of methods of selecting narrowband UV-B starting dose to treat chronic psoriasis. Arch Dermatol. 2011;147(2):168–174. doi: 10.1001/archdermatol.2010.286
  72. Hofer A, Fink-Puches R, Kerl H, Wolf P. Comparison of phototherapy with near vs. far erythemogenic doses of narrow-band ultraviolet B in patients with psoriasis. Br J Dermatol. 1998;138(1):96–100. doi: 10.1046/j.1365-2133.1998.02032.x
  73. Dawe RS, Wainwright NJ, Cameron H, Ferguson J. Narrow-band (TL-01) ultraviolet B phototherapy for chronic plaque psoriasis: three times or five times weekly treatment? Br J Dermatol. 1998;138(5):833–839. doi: 10.1046/j.1365-2133.1998.02221.x
  74. Wainwright NJ, Dawe RS, Ferguson J. Narrowband ultraviolet B (TL-01) phototherapy for psoriasis: which incremental regimen? Br J Dermatol. 1998;139(3):410–414. doi: 10.1046/j.1365-2133.1998.02403.x
  75. Kleinpenning MM, Smits T, Boezeman J, van de Kerkhof PC, Evers AW, Gerritsen MJ. Narrowband ultraviolet B therapy in psoriasis: randomized doubleblind comparison of high-dose and low-dose irradiation regimens. Br J Dermatol. 2009;161(6):1351-1356. doi: 10.1111/j.1365-2133.2009.09212.x
  76. Dawe RS. Comparing narrowband ultraviolet B treatment regimens for psoriasis. Br J Dermatol. 2009;161(6):1215–1216. doi: 10.1111/j.1365-2133.2009.09394.x
  77. Cameron H, Dawe RS, Yule S, Murphy J, Ibbotson SH, Ferguson J. A randomized, observer-blinded trial of twice vs. three times weekly narrowband ultraviolet B phototherapy for chronic plaque psoriasis. Br J Dermatol. 2002;147(5):973–978. doi: 10.1046/j.1365-2133.2002.04996.x
  78. Rees JL, K Waterston, and L Naysmith, Response to Dawe. Journal of investigative dermatology. 2005;124(5):1078. doi: 10.1111/j.0022-202X.2005.23704.x
  79. Waterston K, L Naysmith, and JL Rees, Physiological variation in the erythemal response to ultraviolet radiation and photoadaptation. Journal of investigative dermatology. 2004.123(5):958–964. doi: 10.1111/j.0022-202X.2004.23411.x

补充文件

附件文件
动作
1. JATS XML

版权所有 © Zhilova M.B., Gorodnichev P.V., 2021

Creative Commons License
此作品已接受知识共享署名 4.0国际许可协议的许可

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».