Studies of T.pallidum proteome for the purpose of improving laboratory assessments for the syphilis diagnostics


如何引用文章

全文:

详细

The review covers problems related to the ways of development of modern methods of laboratory assessment used for syphilis diagnostics on the basis of the use of specific antigens of the pathogenic agent. Results of studies of some immune proteome proteins of T.pallidum have been provided. The data on the possibility of their use for the development of new laboratory methods based on the detection of antibodies to Т. pallidum target proteins in blood serum samples of patients with different clinical forms of syphilis.

作者简介

S ROTANOV

ФГБУ «ГНЦДК» Минздравсоцразвития России

Email: rotanov@cnikvi.ru
д.м.н., доцент, главный научный сотрудник отдела лабораторной диагностики ИППП и болезней кожи Москва

R HAYRULIN

ФГБУ «ГНЦДК» Минздравсоцразвития России

к.х.н., научный сотрудник отдела лабораторной диагностики ИППП и болезней кожи Москва

N FRIGO

ФГБУ «ГНЦДК» Минздравсоцразвития России

д.м.н., заместитель директора по научно-образовательной работе Москва

参考

  1. Черешнев В.А., Патрушева Н.Б., Бейкин Я.Б. и др. Сифилис: Иммунитет и лабораторная диагностика. Екатеринбург: УрО РАН, 2006.
  2. Соколовский Е., Фриго Н., Ротанов С. и др. Руководство по лабораторной диагностике сифилиса в странах Восточной Европы. Вестн. дерматол. и венерол. 2008; 5: 87—96.
  3. Китаева Н.В., Фриго Н.В., Мелехина Л.Е. Актуальные проблемы сифилидологии. Современные технологии диагностики сифилитической инфекции. Вестн. дерматол. и венерол. 2008; 5: 51—59.
  4. Гущин А.Е., Фриго Н.В., Дударева Л.А. и др. Перспективы применения полимеразной цепной реакции для диагностики ранних форм сифилиса. Вестн. дерматол. и венерол. 2009; 1: 45—46.
  5. Китаева Н.В., Фриго Н.В., Ротанов С.В. и др. Перспективы диагностического использования протеомных технологий в диагностике ИППП и заболеваний кожи. Вестн. дерматол. и венерол. 2010; 4: 17—27.
  6. Turner T.B., Hollander D.H. Biology of the treponematosis. WHO, 1957.
  7. Овчинников Н.М., Беднова В.Н., Делекторский В.В. Лабораторная диагностика заболеваний, передающихся половым путем. М.: Медицина; 1987.
  8. Овчинников Н.М. Экспериментальный сифилис. М.: Медгиз; 1955.
  9. Fieldsteel A.H., Cox D.L., Moeckli R.A. Cultivation of virulent Treponema pallidum in tissue culture. Infect and Immun 1981; 32(2): 908—915.
  10. Fieldsteel A.H., Cox D.L., Moeckli R.A. Further studies on replication of virulent Treponema pallidum in tissue cultures of Sf1Ep cells. Infect and Immun 1982; 35(2): 449—455.
  11. Norris S.J. In vitro cultivation of Treponema pallidum: Independent confirmation. Infect and Immun 1982; 36(1): 437—439.
  12. Norris S.J., Cox D.L., Weinstock G.M. Biology of Treponema pallidum: Correlation of functional activities with genome sequence data. J Mol Microbiol Biotechnol 2001; 3(1): 37—62.
  13. Cameron C.E., Kuroiwa J.M., Yamada M., et al. Heterologous expression of the Treponema pallidum laminin-binding adhesin Tp0751 in the culturable spirochete Treponema phagedenis. J Bacteriol 2008; 190(7): 2565—2571.
  14. McKevitt M., Patel K., Smajs D. et al. Systematic cloning of Treponema pallidum open reading frames for protein expression and antigen discovery. Genome research 2003; 13(7): 1665—1674.
  15. McKevitt M., Brinkman M.B., McLoughlin M. et al. Genome scale identification of Treponema pallidum antigens. Infect and Immun 2005; 73 (7): 4445—4450.
  16. McGill M.A., Edmondson D.G., Carroll J.A. et al. Characterization and serologic analysis of the Treponema pallidum proteome. Infect and Immun 2010; 78 (6); 2631—2643.
  17. Fraser C.M., Norris S.J., Weinstock G.M. et al. Complete genome sequence of Treponema pallidum, the syphilis spirochete. Science 1998; 281(5375): 375—388.
  18. Stamm L.V., Bassford P.J., Jr. Cloning and expression of Treponema pallidum protein antigens in Escherichia coli. DNA 1982; 1(4): 329—333.
  19. Walfield A.M., Hanff P.A., Lovett M.A. Expression of Treponema pallidum antigens in Escherichia coli. Science 1982; 216(4545): 522—523.
  20. Norris S. Polypeptides of Treponema pallidum: Progress toward understanding their structural, functional, and immunologic roles. Treponema pallidum polypeptide research group. Microbiological reviews 1993; 57(3): 750.
  21. Gross G., Tyring S.K. Sexually transmitted infections and sexually transmitted diseases. Springer, 2011.
  22. Овчинников Н.М., Делекторский В.В. Атлас электронной микроскопии некоторых представителей рода трепонем, рода нейссерия и трихомонад. М.: Медицина; 1974.
  23. Lafond R.E., Lukehart S.A. Biological basis for syphilis. Clin Microbiol Rev 2006; 19(1): 29—49.
  24. Hardy P.H., Levin J. Lack of endotoxin in Borrelia hispanica and Treponema pallidum. Proceedings of the Society for Experimental Biology and Medicine. Soc for Exp Biol and Medicine (N.Y.) 1983; 174(1): 47—52.
  25. Brinkman M.B., McGill M.A., Pettersson J. et al. A novel Treponema pallidum antigen, Tp0136, is an outer membrane protein that binds human fibronectin. Infect and Immun 2008; 76(5): 1848—1857.
  26. Schiller N.L., Cox C. Catabolism of glucose and fatty acids by virulent Treponema pallidum. Infect and Immun 1977; 16(1): 60—68.
  27. Nally J.E., Whitelegge J.P., Carroll J.A. Proteomic strategies to elucidate pathogenic mechanisms of spirochetes. Proteom Clin Applicat 2007; 1(9): 1185—1197.
  28. Knight C.G., Kassen R., Hebestreit H., Rainey P.B. Global analysis of predicted proteomes: Functional adaptation of physical properties. Proceedings of the Nat Acad of Scien of the USA 2004; 101(22): 8390.
  29. Liebler D.C. Introduction to proteomics: Tools for the new biology. Humana Press, 2001.
  30. Mishra N.C., Blobel G. Introduction to proteomics: Principles and applications. John Wiley & Sons, 2010.
  31. Humphery Smith I., Cordwell S.J., Blackstock W.P. Proteome research: Complementarity and limitations with respect to the RNA and DNA worlds. Electrophoresis 1997; 18(8): 1217— 1242.
  32. Brinkman M.B., McKevitt M., McLoughlin M. et al. Reactivity of antibodies from syphilis patients to a protein array representing the Treponema pallidum proteome. J Clin Microbiol 2006; 44(3): 888—891.
  33. Cox D.L., Luthra A., Dunham-Ems S. et al. Surface immunolabeling and consensus computational framework to identify candidate rare outer membrane proteins of Treponema pallidum. Infect and Immun 2010; 78(12): 5178—5194.
  34. Tomson F.L., Conley P.G., Norgard M.V., Hagman K.E. Assessment of cell-surface exposure and vaccinogenic potentials of Treponema pallidum candidate outer membrane proteins. Microbes and infection 2007; 9(11): 1267—1275.
  35. Smajs D., McKevitt M., Howell J.K. et al. Transcriptome of Treponema pallidum: Gene expression profile during experimental rabbit infection. J of bacteriol 2005; 187(5): 1866—1874.
  36. Tjalsma H., Schaeps R.M.J., Swinkels D.W. Immunoproteomics: From biomarker discovery to diagnostic applications. PROTEOMICS — Clinical Applicat 2008; 2(2): 167—180.
  37. Sanchez J.C., Corthals G.L., Hochstrasser D.F. Biomedical applications of proteomics. John Wiley & Sons, 2006.
  38. Radolf J.D., Lukehart S.A. Pathogenic treponema: Molecular and cellular biology. Caister Academic, 2006.
  39. Radolf J.D. Treponema pallidum and the quest for outer membrane proteins. Molecular microbiol 1995; 16(6); 1067—1073.
  40. Cullen P.A., Haake D.A., Adler B. Outer membrane proteins of pathogenic spirochetes. FEMS Microbiology Reviews 2004; 28(3): 291—318.
  41. Cameron C.E., Lukehart S.A., Castro C. et al. Opsonic potential, protective capacity, and sequence conservation of the Treponema pallidum subspecies pallidum Tp92. J of Inf Dis 2000; 181(4): 1401—1413.
  42. Haake D.A.; Spirochaetal lipoproteins and pathogenesis. Microbiology 2000; 146(7): 1491— 1504.
  43. Cox D.L., Akins D.R., Porcella S.F. et al. Treponema pallidum in gel microdroplets: A novel strategy for investigation of treponemal molecular architecture. Molecular microbiol 1995; 15(6): 1151—1164.
  44. Baughn R., Jiang A., Abraham R. et al. Molecular mimicry between an immunodominant amino acid motif on the 47-№ lipoprotein of Treponema pallidum (Tpp47) and multiple repeats of analogous sequences in fibronectin. The J of Immunol 1996; 157(2): 720—731.
  45. Blanco D.R., Giladi M., Champion C.I. et al. Identification of Treponema pallidum subspecies pallidum genes encoding signal peptides and membrane-spanning sequences using a novel alkaline phosphatase expression vector. Mol Microbiol 1991; 5(10): 2405—2415.
  46. Riviere G.R., Wagoner M.A., Baker-Zander S.A. et al. Identification of spirochetes related to Treponema pallidum in necrotizing ulcerative gingivitis and chronic periodontitis. N Engl J Med 1991; 325(8): 539—543.
  47. Matsumoto M., Ishikawa F. Purification of Treponema pallidum, Nichols strain, by two-step column chromatography. J Chromatogr B Biomed Appl 1995; 663(2): 217—224.

补充文件

附件文件
动作
1. JATS XML

版权所有 © ROTANOV S.V., HAYRULIN R.F., FRIGO N.V., 2012

Creative Commons License
此作品已接受知识共享署名 4.0国际许可协议的许可

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».