Моноклональные антитела к вариабельному фрагменту Т-клеточного рецептора – на службе у науки и клиники

Обложка

Цитировать

Полный текст

Аннотация

Обобщен недавний прогресс в разработке моноклональных антител, направленных на вариабельный фрагмент Т-клеточного рецептора, с заданным способом воздействия на целевую субгруппу Т-лимфоцитов. Поскольку уникальные субгруппы Т-клеток ответственны за развитие и исход многих социально значимых заболеваний, способность моноклональных антител уничтожать или расширять патогенетически важные семейства Т-клеток представляет большой интерес в клинической практике. Также обсуждается роль уникальных семейств Т-клеток в патогенезе ряда аутоиммунных и инфекционных заболеваний, что создает предпосылки для разработки высокоэффективных таргетных препаратов на основе моноклональных антител к вариабельному фрагменту Т-клеточного рецептора.

Об авторах

В. П. Хохлов

Институт молекулярной биологии им. В.А. Энгельгардта РАН

Email: med9000@mail.ru
Москва, Россия

Список литературы

  1. Abe J., Kotzin B., Jujo K. et al. Selective expansion of T cells expressing T-cell receptor variable regions Vβ2 and Vβ8 in Kawasaki disease // PNAS USA. 1992. V. 89 (9). P. 4066–4070.
  2. Acuto O., Fabbi M., Smart J. et al. Purification and NH2-terminal amino acid sequencing of the β subunit of a human T-cell antigen receptor // PNAS USA. 1984. V. 81 (12). P. 3851–3855.
  3. Acuto O., Campen T.J., Royer H.D. et al. Molecular analysis of T cell receptor (Ti) variable region (V) gene expression. Evidence that a single Ti beta V gene family can be used in formation of V domains on phenotypically and functionally diverse T cell populations // J. Exp. Med. 1985. V. 161 (6). P. 1326–1343.
  4. Ali M., Nelson A., Lopez A., Sack D. Updated global burden of cholera in endemic countries // PLoS Negl. Trop. Dis. 2015. V. 9 (6). e0003832.
  5. Alvarez-Lafuente R., Fernandez-Gutierrez B., Jover J. et al. Human parvovirus B19, varicella zoster virus and human herpes virus 6 in temporal artery biopsy specimens of patients with giant cell arteritis: analysis with quantitative real time polymerase chain reaction // Ann. Rheum. Dis. 2005. V. 64 (5). P. 780–782.
  6. Antibodies: a laboratory manual / Eds E. Harlow, D. Lane. N.Y.: Cold Spring Harbor Laboratory, 1988. 726 p.
  7. Arden B., Clark S.P., Kabelitz D., Mak T.W. Human T-cell receptor variable gene segment families // Immunogenetics. 1995. V. 42 (6). P. 455–500.
  8. Bhuiyan T., Rahman M., Trivedi S. et al. Mucosal associated invariant T (MAIT) cells are highly activated in duodenal tissue of humans with Vibrio cholera O1 infection: a preliminary report // PLoS Negl. Trop. Dis. 2022. V. 16 (5). e0010411.
  9. Bigler R.D., Posnett D.N., Chiorazzi N. et al. Stimulation of the subset of normal resting T lymphocytes by a monoclonal antibody to a crossreactive determinant of the human T cell antigen receptor // J. Exp. Med. 1985. V. 161 (6). P. 1450–1463.
  10. Bovay A., Zoete V., Dolton G. et al. T cell receptor alpha variable 12-2 bias in the immunodominant response to Yellow fever virus // Eur. J. Immunol. 2018. V. 48 (2). P. 258–272.
  11. Bowerman N., Falta M., Mack D. et al. Identification of multiple public TCR repertoires in chronic beryllium disease // J. Immunol. 2014. V. 192 (10). P. 4571–4580.
  12. Brack A., Geisler A., Martinez-Taboada V. et al. Giant cell vasculitis is a T cell-dependent disease // Mol. Med. 1997. V. 3 (8). P. 530–543.
  13. Britanova O., Lupyr K., Staroverov D. et al. Targeted depletion of TRBV9+ T cells as immunotherapy in a patient with ankylosing spondylitis // Nat. Med. 2023. V. 29. P. 2731–2736.
  14. Cavallo S. Immune-mediated genesis of multiple sclerosis // J. Transl. Autoimmun. 2020. V. 3. 100039.
  15. Chester K., Hawkins R. Clinical issues in antibody design // Tr. Biotechnol. 1995. V. 13 (8). P. 294–300.
  16. Cogswell D., Gapin L., Tobin H. et al. MAIT cells: partners or enemies in cancer immunotherapy? // Cancers. 2021. V. 13 (7). 1502.
  17. Constantinides M., Link V., Tamoutounour S. MAIT cells are imprinted by the microbiota in early life and promote tissue repair // Science. 2019. V. 366 (6464). eaax6624.
  18. Coppieters K., Dotta F., Amirian N. et al. Demonstration of islet-autoreactive CD8 T cells in insulitic lesions from recent onset and long-term type I diabetes patients // J. Exp. Med. 2012. V. 209 (1). P. 51–60.
  19. Damelang T., Brinkhaus M., Osch T. et al. Impact of structural modifications of IgG antibodies on effector functions // Front. Immunol. 2024. V. 14. 1304365.
  20. Desquenne-Clark L., Esch T., Otvos Jr.L., Heber-Katz E. T-cell receptor peptide immunization leads to enhanced and chronic experimental allergic encephalomyelitis // PNAS USA. 1991. V. 88 (16). P. 7219–7223.
  21. Elliott P., Andersson B., Arbustini E. et al. Classification of the cardiomyopathies: a position statement from the European Society of Cardiology Working Group on Myocardial and Pericardial Diseases // Eur. Heart J. 2008. V. 29 (2). P. 270–276.
  22. Esfandiarei M., McManus B. Molecular biology and pathogenesis of viral myocarditis // Annu. Rev. Pathol. 2008. V. 3. P. 127–155.
  23. Frimpong A., Ofori M., Degoot A. et al. Perturbations in the T cell receptor β repertoire during malaria infection in children: a preliminary study // Front. Immunol. 2022. V. 13. 971392.
  24. Fukazawa R., Kobayashi J., Ayusawa M. et al. JCS/JSCS 2020 guideline on diagnosis and management of cardiovascular sequelae in Kawasaki disease // Circ. J. 2020. V. 84 (8). P. 1348–1407.
  25. Greaves S., Atif S., Fontenot A. Adaptive immunity in pulmonary sarcoidosis and chronic beryllium disease // Front. Immunol. 2020. V. 11. 474.
  26. Gregory G., Robinson T., Linklater S. et al. Global incidence, prevalence and mortality of type 1 diabetes in 2021 with projection to 2040: a modeling study // Lancet. 2022. V. 10 (10). P. 741–760.
  27. Grunewald J., Eklund A. Löfgren’s syndrome: human leukocyte antigen strongly influences the disease course // Am. J. Respir. Crit. Care Med. 2009. V. 179 (4). P. 307–312.
  28. Grunewald J., Janson C., Eklund A. et al. Restricted V alpha 2.3 gene usage by CD4+ T lymphocytes in bronchoalveolar lavage fluid from sarcoidosis patients correlates with HLA-DR3 // Eur. J. Immunol. 1992. V. 22 (1). P. 129–135.
  29. Guittet L., de Boysson H., Cerasuolo D. et al. Whole-country and regional incidences of giant cell arteritis in French continental and overseas territories: a 7-year nationwide database analysis // ACR Open Rheumatol. 2022. V. 4 (9). P. 753–759.
  30. Hackstein CP., Klenerman P. Emerging features of MAIT cells and other unconventional T cell populations in human viral disease and vaccination // Semin. Immunol. 2022. V. 61–64. 101661.
  31. Hannum C., Kappler J., Trowbridge I. et al. Immunoglobulin-like nature of the α-chain of a human T-cell antigen/MHC receptor // Nature. 1984. V. 312 (5989). P. 65–67.
  32. Haugeberg G., Bie R., Nordbø S. Temporal arteritis associated with Chlamydia pneumoniae DNA detected in an artery specimen // J. Rheumatol. 2001. V. 28 (7). P. 1738–1739.
  33. Hsu J., Donahue R., Katragadda M. et al. A T cell receptor β chain-directed antibody fusion molecule activates and expands subsets of T cells to promote antitumor activity // Sci. Transl. Med. 2023. V. 15 (724). eadi0258.
  34. Ikuta K., Ogura T., Shimizu A., Honjo T. Low frequency of somatic mutation in β-chain variable region genes of human T cell receptors // PNAS USA. 1985. V. 82 (22). P. 7701–7705.
  35. Isobe M., Amano K., Arimura Y. et al. JCS 2017 guideline on management of vasculitis syndrome – digest version // Circ. J. 2020. V. 84 (2). P. 299–359.
  36. Jog N., McClain M., Heinlen L. et al. Epstein–Barr virus nuclear antigen 1 (EBNA-1) peptides recognized by adult multiple sclerosis patient sera induce neurologic symptoms in a murine model // J. Autoimmun. 2020. V. 106. 102332.
  37. Kalinina A., Bruter A., Nesterenko L. et al. Generation of TCR α-transduced T cells for adoptive transfer therapy of salmonellosis in mice // STAR Protoc. 2021. V. 2 (1). 100368.
  38. Kanagawa O. In vivo T cell tumor therapy with monoclonal antibody directed to the Vβ chain of T cell antigen receptor // J. Exp. Med. 1989. V. 170 (5). P. 1513–1519.
  39. Kappler J., Kubo R., Haskins J. et al. The mouse T cell receptor: comparison of MHC-restricted receptors on two T cell hybridomas // Cell. 1983. V. 34 (3). P. 727–737.
  40. Kaskow B., Baecher-Allan C. Effector T cells in multiple sclerosis // Cold Spring Harbor Perspect. Med. 2018. V. 8 (4). a029025.
  41. Kaushansky N., Eisenstein M., Zilkha-Falb R., Ben-Nun A. The myelin-associated oligodendrocytic basic protein (MOBP) as a relevant primary target autoantigen in multiple sclerosis // Autoimmun. Rev. 2010. V. 9 (4). P. 233–236.
  42. Kawakami Y., Eliyahu S., Delgado C.H. Cloning of the gene coding for a shared human melanoma antigen recognized by autologous T cells infiltrating into tumor // PNAS USA. 1994. V. 91 (9). P. 3515–3519.
  43. Keller A., Eckle S., Xu W. et al. Drugs and drug-like molecules can modulate the function of mucosal-associated invariant T cells // Nat. Immunol. 2017. V. 18. P. 402–411.
  44. Kotzin B., Karuturi S., Chou Y. et al. Preferential T cell receptor beta-chain variable gene use in myelin basic protein-reactive T cell clones from patients with multiple sclerosis // PNAS USA. 1991. V. 88 (20). P. 9161–9165.
  45. Kumar V., Tabibiazar R., Geysen H., Sercarz E. Immunodominant framework region 3 peptide from TCR Vβ8.2 chain controls murine experimental autoimmune encephalomyelitis // J. Immunol. 1995. V. 154 (4). P. 1941–1950.
  46. Helmick C., Felson D., Lawrence R. et al. Estimates of the prevalence of arthritis and other rheumatic conditions in the United States // Arthritis Rheum. 2008. V. 58 (1). P. 26–35.
  47. Leeansyah E., Boulouis C., Kwa A., Sandberg J. Emerging role for MAIT cells in control of antimicrobial resistance // Tr. Microbiol. 2021. V. 29 (6). P. 504–516.
  48. Lefranc M.-P., Lefranc G. T cell receptor FactsBook. San Diego, San Francisco, New York, Boston, London, Sydney, Tokyo: Acad. Press, 2001. 398 p.
  49. Leng T., Akther H., Hackstein CP. et al. TCR and inflammatory signals tune human MAIT cells to exert specific tissue repair and effector functions // Cell Rep. 2019. V. 28 (12). P. 3077–3091.e5
  50. Li B., Li T., Pignon J.C. et al. Landscape of tumor-infiltrating T cell repertoire of human cancers // Nat. Genet. 2016. V. 48 (7). P. 725–732.
  51. Liu R., Oldham R., Teal E. et al. Fc-engineering for modulated effector functions – improving antibodies for cancer treatment // Antibodies. 2020. V. 9 (4). 64.
  52. Liu Z., Cort L., Eberwine R. et al. Prevention of type 1 diabetes in the rat with an allele-specific anti-T-cell receptor antibody // Diabetes. 2012. V. 61 (5). P. 1160–1168.
  53. Loh L., Wang Z., Sant S. et al. Human mucosal-associated invariant T cells contribute to antiviral influenza immunity via IL-18-dependent activation // PNAS USA. 2016. V. 113 (36). P. 10133–10138.
  54. Lopez-Hoyos M., Bartolome-Pacheco M., Blanco R. et al. Selective T cell receptor decrease in peripheral blood T lymphocytes of patients with polymyalgia rheumatic and giant cell arteritis // Ann. Rheum. Dis. 2004. V. 63 (1). P. 54–60.
  55. Lu R.M., Hwang Y.C., Liu I.J. et al. Development of therapeutic antibodies for the treatment of diseases // J. Biomed. Sci. 2020. V. 27 (1). 1.
  56. Marrero I., Aguilera C., Hamm D. et al. High-throughput sequencing reveals restricted TCR Vβ usage and public TCRβ clonotypes among pancreatic lymph node memory CD4+ T cells and their involvement in autoimmune diabetes // Mol. Immunol. 2018. V. 74. P. 82–95.
  57. May E., Dilphy N., Frauendorf E. et al. Conserved TCR beta chain usage in reactive arthritis; evidence for selection by a putative HLA-B-27-associated autoantigen // Tiss. Antigens. 2002. V. 60 (4). P. 299–308.
  58. Meermeier E., Harriff M., Karamooz E., Lewinsohn D. MAIT cells and microbial immunity // Immunol. Cell Biol. 2018. V. 96 (6). P. 607–617.
  59. Middleton D., Menchaca L., Rood H., Komerofsky R. New allele frequency database: http://www.allelefrequencies.net // Tiss. Antigens. 2003. V. 61. P. 403–407.
  60. Mitchell A., Alkanani A., McDaniel K. et al. T cell responses to hybrid insulin peptides prior to type I diabetes development // PNAS USA. 2021. V. 118 (6). e2019129118.
  61. Nakatsugawa M., Yamashita Y., Ochi T. et al. Specific roles of each TCR hemichain in generating functional chain-centric TCR // J. Immunol. 2015. V. 194 (7). P. 3487– 3500.
  62. Nakayama M., Michels A. Using the T cell receptor as a biomarker in type 1 diabetes // Front. Immunol. 2021. V. 12. 777788.
  63. Nakayama M., McDaniel K., Fitzgerald-Miller L. et al. Regulatory vs inflammatory cytokine T-cell responses to mutated insulin peptides in healthy and type I diabetic subjects // PNAS USA. 2015. V. 112 (14). P. 4429–4434.
  64. Nasonov E., Mazurov V., Lila A. et al. Effectiveness and safety of BCD-180, anti-TRBV9+ T-lymphocytes monoclonal antibody in patients with active radiographic axial spondyloarthritis: 36-week results of double-blind randomized placebo-controlled phase II clinical study ELEFTA // Rheumatol. Sci. Pract. 2024. V. 62 (1). P. 65–80.
  65. Newman L., Lloyd J., Daniloff E. The natural history of beryllium sensitization and chronic beryllium disease // Environ. Health Perspect. 1996. V. 104 (Suppl. 5). P. 937–943.
  66. Noutsias M., Rohde M., Göldner K. et al. Expression of functional T-cell markers and T-cell receptor Vbeta repertoire in endomyocardial biopsies from patients presenting with acute myocarditis and dilated cardiomyopathy // Eur. J. Heart Fail. 2011. V. 13 (6). P. 611–618.
  67. Oksenberg J., Panzara M., Begovich A. et al. Selection for T-cell receptor Vβ-Dβ-Jβ gene rearrangements with specificity for a myelin basic protein peptide in brain lesions of multiple sclerosis // Nature. 1993. V. 362. P. 68–70.
  68. Owhashi M., Heber-Katz E. Protection from experimental allergic encephalomyelitis conferred by a monoclonal antibody directed against a shared idiotype on rat T cell receptors specific for myelin basic protein // J. Exp. Med. 1988. V. 168 (6). P. 2153–2164.
  69. Paul S., Pearlman A., Douglass J. et al. TCR beta chain- directed bispecific antibodies for the treatment of T-cell cancers // Sci. Transl. Med. 2021. V. 13 (584). eabd3595.
  70. Perez-Mazliah D., Langhorne J. CD4 T-cell subsets in malaria: TH1/TH2 revisited // Front. Immunol. 2015. V. 5. 671.
  71. Porcelli S., Yockey C., Brenner M., Balk S. Analysis of T cell antigen receptor (TCR) expression by human peripheral blood CD48 alpha/beta T cells demonstrates preferential use of several V beta genes and an invariant TCR alpha chain // J. Exp. Med. 1993. V. 178 (1). P. 1–16.
  72. Posnett D.N., Bigler R.D., Bushkin Y. et al. T cell antiidiotypic antibodies reveal differences between two human leukemias // J. Exp. Med. 1984. V. 160 (2). P. 494–505.
  73. Rashu R., Ninkov M., Wardell C. et al. Targeting the MR1-MAIT cell axis improves vaccine efficacy and affords protection against viral pathogens // PLoS Pathog. 2023. V. 19 (6). e1011485.
  74. Richeldi L., Sorrentino R., Saltini C. HLA-DPB1 glutamate 69: a genetic marker of beryllium diseas // Science. 1993. V. 262 (5131). P. 242–244.
  75. Roep B., Peakman M. Diabetogenic T lymphocytes in human type 1 diabetes // Curr. Opin. Immunol. 2011. V. 23 (6). P. 746–753.
  76. Rowen L., Koop B.F., Hood L. The complete 685-kilobase DNA sequence of the human beta T cell receptor locus // Science. 1996. V. 272 (5269). P. 1755–1762.
  77. Rowley A., Baker S., Shulman S. et al. Ultrastructural, immunofluorescence, and RNA evidence support the hypo- thesis of a “new” virus associated with Kawasaki disease // J. Infect. Dis. 2011. V. 203 (7). P. 1021–1030.
  78. Saltini C., Winestock K., Kirby M. et al. Maintenance of alveolitis in patients with chronic beryllium disease by beryllium-specific helper T cells // N. Engl. J. Med. 1989. V. 320(17). P. 1103–1109.
  79. Samson M., Ly K., Tournier B. et al. Involvement and prognosis value of CD8+ T cells in giant cell arteritis // J. Autoimmun. 2016. V. 72. P. 73–83.
  80. Schmidt J., Smail A., Roche B. et al. Incidence of severe infections and infection-related mortality during the course of giant cell arteritis: a multicenter, prospective, double-cohort study // Arthritis Rheumatol. 2016. V. 68 (6). P. 1477–1482.
  81. Smith T., Maricic I., Ria F. et al. CD8alpha+ dendritic cells prime TCR-peptide-reactive regulatory CD4+FOXP3-T cells // Eur. J. Immunol. 2010. V. 40 (7). P. 1906–1915.
  82. Tolle M. Mosquito-borne diseases // Curr. Probl. Pediatr. Adolesc. Health Care. 2009. V. 39 (4). P. 97–140.
  83. Tran M., Faridi P., Lim J. et al. T cell receptor recognition of hybrid insulin peptides bound to HLA-Dq8 // Nat. Commun. 2021. V. 12 (1). P. 1–13.
  84. Urban J., Kumar V., Kono D. et al. Restricted use of T cell receptor V genes in murine autoimmune encephalomyelitis raises possibilities for antibody therapy // Cell. 1988. V. 54 (4). P. 577–592.
  85. Vandenbark A., Hashim G., Offner H. Immunization with a synthetic T cell receptor V region peptide protects against experimental autoimmune encephalomyelitis // Nature. 1989. V. 341 (6242). P. 541–544.
  86. Walker L., Tharmalingam H., Klenerman P. The rise and fall of MAIT cells with age // Scand. J. Immunol. 2014. V. 80 (6). P. 462–463.
  87. Wang C.Y., Bushkin Y., Pica R. et al. Stimulation and expansion of a human T-cell subpopulation by a monoclonal antibody to T-cell receptor molecule // Hybridoma. 1986. V. 5 (3). P. 179–190.
  88. Wei S., Charmley P., Robinson M.A., Concannon P. The extent of the human germline T-cell receptor V beta gene segment repertoire // Immunogenetics. 1994. V. 40 (1). P. 27–36.
  89. Weyand C., Schönberger J., Oppitz U. et al. Distinct vascular lesions in giant cell arteritis share identical T cell clonotypes // J. Exp. Med. 1994. V. 179 (3). P. 951–960.
  90. Wilson R.K., Lai E., Concannon P. et al. Structure, organization and polymorphism of murine and human T-cell receptor alpha and beta chain gene families // Immunol. Rev. 1988. V. 101. P. 149–172.
  91. Yong V. Differential mechanisms of action of interferon-beta and glatiramer acetate in MS // Neurology. 2002. V. 59 (6). P. 802–808.
  92. Zaller D., Osman G., Kanagawa O., Hood L. Prevention and treatment of murine experimental allergic encephalomyelitis with T cell receptor Vβ-specific antibodies // J. Exp. Med. 1990. V. 171 (6). P. 1943–1955.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Российская академия наук, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».