Open Access Open Access  Restricted Access Access granted  Restricted Access Subscription Access

Vol 75, No 4 (2020)

Spectral triangles of non-selfadjoint Hill and Dirac operators

Djakov P.B., Mityagin B.S.

Abstract

This is a survey of results from the last 10 to 12 years about the structure of the spectra of Hill–Schrödinger and Dirac operators. Let $L$ be a Hill operator or a one-dimensional Dirac operator on the interval $[0,\pi]$. If $L$ is considered with Dirichlet, periodic, or antiperiodic boundary conditions, then the corresponding spectra are discrete and, for sufficiently large $|n|$, close to $n^2$ in the Hill case or close to $n$ in the Dirac case ($n\in \mathbb{Z}$). There is one Dirichlet eigenvalue $\mu_n$ and two periodic (if $n$ is even) or antiperiodic (if $n$ is odd) eigenvalues $\lambda_n^-$ and $\lambda_n^+$ (counted with multiplicity). Asymptotic estimates are given for the spectral gaps $\gamma_n=\lambda_n^+-\lambda_n^-$ and the deviations $\delta_n=\mu_n-\lambda_n^+$ in terms of the Fourier coefficients of the potentials. Moreover, precise asymptotic expressions for $\gamma_n$ and $\delta_n$ are found for special potentials that are trigonometric polynomials.Bibliography: 45 titles.
Uspekhi Matematicheskikh Nauk. 2020;75(4):3-44
pages 3-44 views

Semantic limits of dense combinatorial objects

Coregliano L.N., Razborov A.A.

Abstract

The theory of limits of discrete combinatorial objects has been thriving for the last decade or so. The syntactic, algebraic approach to the subject is popularly known as ‘flag algebras’, while the semantic, geometric approach is often associated with the name ‘graph limits’. The language of graph limits is generally more intuitive and expressible, but a price that one has to pay for it is that it is better suited for the case of ordinary graphs than for more general combinatorial objects. Accordingly, there have been several attempts in the literature, of varying degree of generality, to define limit objects for more complicated combinatorial structures. This paper is another attempt at a workable general theory of dense limit objects. Unlike previous efforts in this direction (with the notable exception of [5] by Aroskar and Cummings), our account is based on the same concepts from first-order logic and model theory as in the theory of flag algebras. It is shown how our definitions naturally encompass a host of previously considered cases (graphons, hypergraphons, digraphons, permutons, posetons, coloured graphs, and so on), and the fundamental properties of existence and uniqueness are extended to this more general case. Also given is an intuitive general proof of the continuous version of the Induced Removal Lemma based on the compactness theorem for propositional calculus. Use is made of the notion of open interpretation that often allows one to transfer methods and results from one situation to another. Again, it is shown that some previous arguments can be quite naturally framed using this language.Bibliography: 68 titles.
Uspekhi Matematicheskikh Nauk. 2020;75(4):45-152
pages 45-152 views

Geometry of Banach limits and their applications

Semenov E.M., Sukochev F.A., Usachev A.S.

Abstract

A Banach limit is a positive shift-invariant functional on $\ell_\infty$ which extends the functional$$(x_1,x_2,…)\mapsto\lim_{n\to\infty}x_n$$from the set of convergent sequences to $\ell_\infty$. The history of Banach limits has its origins in classical papers by Banach and Mazur. The set of Banach limits has interesting properties which are useful in applications. This survey describes the current state of the theory of Banach limits and of the areas in analysis where they have found applications.Bibliography: 137 titles.
Uspekhi Matematicheskikh Nauk. 2020;75(4):153-194
pages 153-194 views

Arkadii L'vovich Onishchik (obituary)

Akhiezer D.N., Vinberg E.B., Gorbatsevich V.V., Kazarin L.S., Leites D.A., Lukatskii A.M., Shchetinin A.N.
Uspekhi Matematicheskikh Nauk. 2020;75(4):195-206
pages 195-206 views

Magnetic Lieb–Thirring inequality for periodic functions

Ilyin A.A., Laptev A.A.
Uspekhi Matematicheskikh Nauk. 2020;75(4):207-208
pages 207-208 views

Partially framed manifolds and loop spaces on the group $\operatorname{SU}(2)$

Buchstaber V.M.
Uspekhi Matematicheskikh Nauk. 2020;75(4):209-210
pages 209-210 views

On the problem of classification of periodic continued fractions in hyperelliptic fields

Platonov V.P., Fedorov G.V.
Uspekhi Matematicheskikh Nauk. 2020;75(4):211-212
pages 211-212 views
pages 213-214 views

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».