The number of components of the Pell–Abel equations with primitive solutions of given degree
- Authors: Bogatyrev A.B.1, Gendron Q.2
-
Affiliations:
- Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences
- Instituto de Matemáticas UNAM Unidad Oaxaca
- Issue: Vol 78, No 1 (2023)
- Pages: 209-210
- Section: Articles
- URL: https://ogarev-online.ru/0042-1316/article/view/133741
- DOI: https://doi.org/10.4213/rm10082
- ID: 133741
Cite item
Abstract
About the authors
Andrei Borisovich Bogatyrev
Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences
Email: ab.bogatyrev@gmail.com
Doctor of physico-mathematical sciences, Associate professor
Quentin Gendron
Instituto de Matemáticas UNAM Unidad Oaxaca
Email: quentin.gendron@im.unam.mx
References
- N. H. Abel, J. Reine Angew. Math., 1826:1 (1826), 185–221
- А. Б. Богатырев, Экстремальные многочлены и римановы поверхности, МЦНМО, М., 2005, 173 с.
- А. Б. Богатырев, Матем. сб., 194:10 (2003), 27–48
- K. Strebel, Quadratic differentials, Ergeb. Math. Grenzgeb. (3), 5, Springer-Verlag, Berlin, 1984, xii+184 pp.
- J. S. Birman, Braids, links and mapping class groups, Ann. of Math. Stud., 82, Princeton Univ. Press, Princeton, NJ; Univ. of Tokyo Press, Tokyo, 1975, ix+228 pp.
Supplementary files
