Kantorovich problem of optimal transportation of measures: new directions of research
- Authors: Bogachev V.I.1,2
-
Affiliations:
- Lomonosov Moscow State University
- HSE University
- Issue: Vol 77, No 5 (2022)
- Pages: 3-52
- Section: Articles
- URL: https://ogarev-online.ru/0042-1316/article/view/133709
- DOI: https://doi.org/10.4213/rm10074
- ID: 133709
Cite item
Abstract
This paper gives a survey of investigations in the last decade and new results on various recent modifications of the classical Kantorovich problem of the optimal transportation of measures. We discuss in detail nonlinear Kantorovich problems, problems with constraints on the densities of transport plans, and optimal transportation problems with a parameter. In addition, we consider some questions relating to the geometry and topology of spaces of measures connected with these new formulations.Bibliography: 134 items.
About the authors
Vladimir Igorevich Bogachev
Lomonosov Moscow State University; HSE University
Email: vibogach@mail.ru
Doctor of physico-mathematical sciences, Professor
References
- B. Acciaio, J. Backhoff-Veraguas, A. Zalashko, “Causal optimal transport and its links to enlargement of filtrations and continuous-time stochastic optimization”, Stochastic Process. Appl., 130:5 (2020), 2918–2953
- B. Acciaio, M. Beiglböck, G. Pammer, “Weak transport for non-convex costs and model-independence in a fixed-income market”, Math. Finance, 31:4 (2021), 1423–1453
- K. A. Afonin, V. I. Bogachev, “Kantorovich type topologies on spaces of measures and convergence of barycenters”, Commun. Pure Appl. Anal. (to appear)
- J.-J. Alibert, G. Bouchitte, T. Champion, “A new class of costs for optimal transport planning”, European J. Appl. Math., 30:6 (2019), 1229–1263
- L. Ambrosio, E. Brue, D. Semola, Lectures on optimal transport, Unitext, 130, Springer, Cham, 2021, ix+250 pp.
- L. Ambrosio, M. Erbar, G. Savare, “Optimal transport, Cheeger energies and contractivity of dynamic transport distances in extended spaces”, Nonlinear Anal., 137 (2016), 77–134
- L. Ambrosio, N. Gigli, “A user's guide to optimal transport”, Modelling and optimisation of flows on networks, Lecture Notes in Math., 2062, Fond. CIME/CIME Found. Subser., Springer, Heidelberg, 2013, 1–155
- L. Ambrosio, A. Pratelli, “Existence and stability results in the $L^1$ theory of optimal transportation”, Optimal transportation and applications (Martina Franca, 2001), Lecture Notes in Math., 1813, Springer, Berlin, 2003, 123–160
- А. Л. Андрианов, “Развитие линейного программирования в работах Л. В. Канторовича 1930–1950-х гг.”, Истор.-матем. исслед., сер. 2, 15(50), Изд-во “Янус-К”, М., 2014, 25–40
- S. Athreya, W. Löhr, A. Winter, “The gap between Gromov-vague and Gromov–Hausdorff-vague topology”, Stochastic Process. Appl., 126:9 (2016), 2527–2553
- J. Backhoff-Veraguas, D. Bartl, M. Beiglböck, M. Eder, “Adapted Wasserstein distances and stability in mathematical finance”, Finance Stoch., 24:3 (2020), 601–632
- J. Backhoff-Veraguas, D. Bartl, M. Beiglböck, M. Eder, “All adapted topologies are equal”, Probab. Theory Related Fields, 178:3-4 (2020), 1125–1172
- J. Backhoff[-Veraguas], D. Bartl, M. Beiglböck, J. Wiesel, “Estimating processes in adapted Wasserstein distance”, Ann. Appl. Probab., 32:1 (2022), 529–550
- J. Backhoff[-Veraguas], M. Beiglböck, Yiqing Lin, A. Zalashko, “Causal transport in discrete time and applications”, SIAM J. Optim., 27:4 (2017), 2528–2562
- J. Backhoff-Veraguas, M. Beiglböck, G. Pammer, “Existence, duality, and cyclical monotonicity for weak transport costs”, Calc. Var. Partial Differential Equations, 58:6 (2019), 203, 28 pp.
- J. Backhoff-Veraguas, G. Pammer, “Applications of weak transport theory”, Bernoulli, 28:1 (2022), 370–394
- J. Backhoff-Veraguas, G. Pammer, “Stability of martingale optimal transport and weak optimal transport”, Ann. Appl. Probab., 32:1 (2022), 721–752
- M. Barbie, A. Gupta, “The topology of information on the space of probability measures over Polish spaces”, J. Math. Econom., 52 (2014), 98–111
- D. Bartl, P. Cheridito, M. Kupper, L. Tangpi, “Duality for increasing convex functionals with countably many marginal constraints”, Banach J. Math. Anal., 11:1 (2017), 72–89
- M. Beiglböck, M. Goldstern, G. Maresch, W. Schachermayer, “Optimal and better transport plans”, J. Funct. Anal., 256:6 (2009), 1907–1927
- M. Beiglböck, N. Juillet, “On a problem of optimal transport under marginal martingale constraints”, Ann. Probab., 44:1 (2016), 42–106
- J.-D. Benamou, G. Carlier, L. Nenna, “Generalized incompressible flows, multi-marginal transport and Sinkhorn algorithm”, Numer. Math., 142:1 (2019), 33–54
- J. Bergin, “On the continuity of correspondences on sets of measures with restricted marginals”, Econom. Theory, 13:2 (1999), 471–481
- S. Bobkov, M. Ledoux, One-dimensional empirical measures, order statistics, and Kantorovich transport distances, Mem. Amer. Math. Soc., 261, № 1259, Amer. Math. Soc., Providence, RI, 2019, v+126 pp.
- В. И. Богачев, Основы теории меры, т. 1, 2, НИЦ “Регулярная и хаотическая динамика”, М.–Ижевск, 2003, 544 с., 576 с.
- V. I. Bogachev, Weak convergence of measures, Math. Surveys Monogr., 234, Amer. Math. Soc., Providence, RI, 2018, xii+286 pp.
- В. И. Богачев, “О секвенциальных свойствах пространств мер”, Матем. заметки, 110:3 (2021), 459–464
- В. И. Богачев, “О приближении мер их конечномерными образами”, Функц. анализ и его прил., 55:3 (2021), 75–81
- В. И. Богачев, “Задачи Канторовича с параметром и ограничениями на плотности”, Сиб. матем. журн., 63:1 (2022), 42–57
- В. И. Богачев, А. Н. Доледенок, И. И. Малофеев, “Задача Канторовича с параметром и ограничениями на плотность”, Матем. заметки, 110:6 (2021), 922–926
- В. И. Богачев, А. Н. Калинин, “Непрерывная функция стоимости, для которой минимумы в задачах Монжа и Канторовича не равны”, Докл. РАН, 463:4 (2015), 383–386
- В. И. Богачев, А. Н. Калинин, С. Н. Попова, “О равенстве значений в задачах Монжа и Канторовича”, Вероятность и статистика. 25, Посвящается памяти Владимира Николаевича Судакова, Зап. науч. сем. ПОМИ, 457, ПОМИ, СПб., 2017, 53–73
- В. И. Богачев, А. В. Колесников, “Задача Монжа–Канторовича: достижения, связи и перспективы”, УМН, 67:5(407) (2012), 3–110
- V. I. Bogachev, I. I. Malofeev, “Kantorovich problems and conditional measures depending on a parameter”, J. Math. Anal. Appl., 486:1 (2020), 123883, 30 pp.
- V. I. Bogachev, I. I. Malofeev, “Nonlinear Kantorovich problems with a parameter”, Изв. Иркут. гос. ун-та. Сер. Матем., 41 (2022), 96–106
- V. Bogachev, S. Popova, Optimal transportation of measures with a parameter, 2021, 14 pp.
- V. I. Bogachev, S. N. Popova, A. V. Rezbaev, “On nonlinear Kantorovich problems with density constraints”, Moscow Math. J. (to appear)
- В. И. Богачев, А. В. Резбаев, “Существование решений нелинейной задачи Канторовича оптимальной транспортировки”, Матем. заметки, 112:3 (2022), 360–370
- В. И. Богачев, А. В. Шапошников, “Оценки снизу расстояния Канторовича”, Докл. РАН, 460:6 (2015), 631–633
- V. I. Bogachev, A. V. Shaposhnikov, Feng-Yu Wang, “Sobolev–Kantorovich inequalities under $operatorname{CD}(0,infty)$ condition”, Commun. Contemp. Math., 24:5 (2022), 2150027, 27 pp.
- В. И. Богачев, О. Г. Смолянов, В. И. Соболев, Топологические векторные пространства и их приложения, НИЦ “Регулярная и хаотическая динамика”, М.–Ижевск, 2012, 584 с.
- В. И. Богачев, Ф.-Ю. Ванг, А. В. Шапошников, “Оценки норм Канторовича на многообразиях”, Докл. РАН, 463:6 (2015), 633–638
- В. И. Богачев, Ф.-Ю. Ванг, А. В. Шапошников, “О неравенствах, связывающих нормы Соболева и Канторовича”, Докл. РАН, 468:2 (2016), 131–133
- W. Boyer, B. Brown, A. Loving, S. Tammen, “Optimal transportation with constant constraint”, Involve, 12:1 (2019), 1–12
- Y. Brenier, D. Vorotnikov, “On optimal transport of matrix-valued measures”, SIAM J. Math. Anal., 52:3 (2020), 2849–2873
- H. Brezis, P. Mironescu, “The Plateau problem from the perspective of optimal transport”, C. R. Math. Acad. Sci. Paris, 357:7 (2019), 597–612
- M. Brückerhoff, N. Juillet, “Instability of martingale optimal transport in dimension $dge 2$”, Electron. Commun. Probab., 27 (2022), 24, 10 pp.
- D. B. Bukin, “On the Monge and Kantorovich problems for distributions of diffusion processes”, Math. Notes, 96:5 (2014), 864–870
- Д. Б. Букин, “О задаче Канторовича для нелинейных образов меры Винера”, Матем. заметки, 100:5 (2016), 682–688
- D. B. Bukin, E. P. Krugova, “Transportation costs for optimal and triangular transformations of Gaussian measures”, Theory Stoch. Process., 23:2 (2018), 21–32
- G. Buttazzo, T. Champion, L. De Pascale, “Continuity and estimates for multimarginal optimal transportation problems with singular costs”, Appl. Math. Optim., 78:1 (2018), 185–200
- C. Castaing, P. Raynaud de Fitte, M. Valadier, Young measures on topological spaces. With applications in control theory and probability theory, Math. Appl., 571, Kluwer Acad. Publ., Dordrecht, 2004, xii+320 pp.
- Hong-Bin Chen, J. Niles-Weed, “Asymptotics of smoothed Wasserstein distances”, Potential Anal., 56:4 (2022), 571–595
- Yongxin Chen, W. Gangbo, T. T. Georgiou, A. Tannenbaum, “On the matrix Monge–Kantorovich problem”, European J. Appl. Math., 31:4 (2020), 574–600
- Yongxin Chen, T. T. Georgiou, M. Pavon, “On the relation between optimal transport and Schrödinger bridges: a stochastic control viewpoint”, J. Optim. Theory Appl., 169:2 (2016), 671–691
- Yongxin Chen, T. T. Georgiou, M. Pavon, “Stochastic control liaisons: Richard Sinkhorn meets Gaspard Monge on a Schrödinger bridge”, SIAM Rev., 63:2 (2021), 249–313
- Yongxin Chen, T. T. Georgiou, A. Tannenbaum, “Vector-valued optimal mass transport”, SIAM J. Appl. Math., 78:3 (2018), 1682–1696
- P. Cheridito, M. Kiiski, D. J. Prömel, H. M. Soner, “Martingale optimal transport duality”, Math. Ann., 379:3-4 (2021), 1685–1712
- L. Chizat, G. Peyre, B. Schmitzer, F.-X. Vialard, “Unbalanced optimal transport: dynamic and Kantorovich formulations”, J. Funct. Anal., 274:11 (2018), 3090–3123
- K. J. Ciosmak, “Optimal transport of vector measures”, Calc. Var. Partial Differential Equations, 60:6 (2021), 230, 22 pp.
- C. Clason, D. A. Lorenz, H. Mahler, B. Wirth, “Entropic regularization of continuous optimal transport problems”, J. Math. Anal. Appl., 494:1 (2021), 124432, 22 pp.
- M. Colombo, S. Di Marino, “Equality between Monge and Kantorovich multimarginal problems with Coulomb cost”, Ann. Mat. Pura Appl. (4), 194:2 (2015), 307–320
- J. Dedecker, C. Prieur, P. Raynaud De Fitte, “Parametrized Kantorovich–Rubinštein theorem and application to the coupling of random variables”, Dependence in probability and statistics, Lect. Notes Stat., 187, Springer, New York, 2006, 105–121
- А. Н. Доледенок, “О задаче Канторовича с ограничением на плотность”, Матем. заметки, 104:1 (2018), 45–55
- Р. Энгелькинг, Общая топология, Мир, М., 1986, 752 с.
- A. Figalli, F. Glaudo, An invitation to optimal transport, Wasserstein distances, and gradient flows, EMS Textbk. Math., EMS Press, Berlin, 2021, vi+136 pp.
- G. Friesecke, “A simple counterexample to the Monge ansatz in multimarginal optimal transport, convex geometry of the set of Kantorovich plans, and the Frenkel–Kontorova model”, SIAM J. Math. Anal., 51:6 (2019), 4332–4355
- G. Friesecke, D. Matthes, B. Schmitzer, “Barycenters for the Hellinger–Kantorovich distance over $mathbb{R}^d$”, SIAM J. Math. Anal., 53:1 (2021), 62–110
- A. Galichon, Optimal transport methods in economics, Princeton Univ. Press, Princeton, NJ, 2016, xii+170 pp.
- I. Gentil, C. Leonard, L. Ripani, “Dynamical aspects of the generalized Schrödinger problem via Otto calculus – a heuristic point of view”, Rev. Mat. Iberoam., 36:4 (2020), 1071–1112
- A. Gerolin, A. Kausamo, T. Rajala, “Nonexistence of optimal transport maps for the multimarginal repulsive harmonic cost”, SIAM J. Math. Anal., 51:3 (2019), 2359–2371
- M. Ghossoub, D. Saunders, “On the continuity of the feasible set mapping in optimal transport”, Econ. Theory Bull., 9:1 (2021), 113–117
- N. Ghoussoub, Young-Heon Kim, Tongseok Lim, “Structure of optimal martingale transport plans in general dimensions”, Ann. Probab., 47:1 (2019), 109–164
- N. Ghoussoub, B. Maurey, “Remarks on multi-marginal symmetric Monge–Kantorovich problems”, Discrete Contin. Dyn. Syst., 34:4 (2014), 1465–1480
- N. A. Gladkov, A. V. Kolesnikov, A. P. Zimin, “On multistochastic Monge–Kantorovich problem, bitwise operations, and fractals”, Calc. Var. Partial Differential Equations, 58:5 (2019), 173, 33 pp.
- N. A. Gladkov, A. V. Kolesnikov, A. P. Zimin, “The multistochastic Monge–Kantorovich problem”, J. Math. Anal. Appl., 506:2 (2022), 125666, 82 pp.
- N. A. Gladkov, A. P. Zimin, “An explicit solution for a multimarginal mass transportation problem”, SIAM J. Math. Anal., 52:4 (2020), 3666–3696
- J. Goubault-Larrecq, “Kantorovich–Rubinstein quasi-metrics I: Spaces of measures and of continuous valuations”, Topology Appl., 295 (2021), 107673, 37 pp.
- F. de Gournay, J. Kahn, L. Lebrat, “Differentiation and regularity of semi-discrete optimal transport with respect to the parameters of the discrete measure”, Numer. Math., 141:2 (2019), 429–453
- N. Gozlan, C. Roberto, P.-M. Samson, P. Tetali, “Kantorovich duality for general transport costs and applications”, J. Funct. Anal., 273:11 (2017), 3327–3405
- C. Griessler, “$C$-cyclical monotonicity as a sufficient criterion for optimality in the multimarginal Monge–Kantorovich problem”, Proc. Amer. Math. Soc., 146:11 (2018), 4735–4740
- M. Huesmann, D. Trevisan, “A Benamou–Brenier formulation of martingale optimal transport”, Bernoulli, 25:4A (2019), 2729–2757
- M. Iacobelli, “A new perspective on Wasserstein distances for kinetic problems”, Arch. Ration. Mech. Anal., 244:1 (2022), 27–50
- Л. В. Канторович, “О перемещении масс”, Докл. АН СССР, 37:7-8 (1942), 227–229
- Л. В. Канторович, Математико-экономические работы, Избранные труды, Наука, Новосибирск, 2011, 760 с.
- Л. В. Канторович, Г. П. Акилов, Функциональный анализ, 2-е изд., Наука, М., 1977, 742 с.
- Л. В. Канторович, Г. Ш. Рубинштейн, “Об одном функциональном пространстве и некоторых экстремальных задачах”, Докл. АН СССР, 115:6 (1957), 1058–1061
- Л. В. Канторович, Г. Ш. Рубинштейн, “Об одном пространстве вполне аддитивных функций множества”, Вестн. ЛГУ, 13:7 (1958), 52–59
- S. Kondratyev, L. Monsaingeon, D. Vorotnikov, “A new optimal transport distance on the space of finite Radon measures”, Adv. Differential Equations, 21:11-12 (2016), 1117–1164
- J. Korman, R. J. McCann, “Insights into capacity-constrained optimal transport”, Proc. Natl. Acad. Sci. USA, 110:25 (2013), 10064–10067
- J. Korman, R. J. McCann, “Optimal transportation with capacity constraints”, Trans. Amer. Math. Soc., 367:3 (2015), 1501–1521
- J. Korman, R. J. McCann, C. Seis, “Dual potentials for capacity constrained optimal transport”, Calc. Var. Partial Differential Equations, 54:1 (2015), 573–584
- J. Korman, R. J. McCann, C. Seis, “An elementary approach to linear programming duality with application to capacity constrained transport”, J. Convex Anal., 22:3 (2015), 797–808
- В. В. Козлов, “Задача Монжа ‘о выемках и насыпях’ на торе и проблема малых знаменателей”, Сиб. матем. журн., 59:6 (2018), 1370–1374
- D. Kramkov, Yan Xu, “An optimal transport problem with backward martingale constraints motivated by insider trading”, Ann. Appl. Probab., 32:1 (2022), 294–326
- S. Kuksin, V. Nersesyan, A. Shirikyan, “Exponential mixing for a class of dissipative PDEs with bounded degenerate noise”, Geom. Funct. Anal., 30:1 (2020), 126–187
- R. Lassalle, “Causal transport plans and their Monge–Kantorovich problems”, Stoch. Anal. Appl., 36:3 (2018), 452–484
- C. Leonard, “From the Schrödinger problem to the Monge–Kantorovich problem”, J. Funct. Anal., 262:4 (2012), 1879–1920
- C. Leonard, “A survey of the Schrödinger problem and some of its connections with optimal transport”, Discrete Contin. Dyn. Syst., 34:4 (2014), 1533–1574
- В. Л. Левин, А. А. Милютин, “Задача о перемещении масс с разрывной функцией стоимости и массовая постановка проблемы двойственности выпуклых экстремальных задач”, УМН, 34:3(207) (1979), 3–68
- M. Liero, A. Mielke, G. Savare, “Optimal entropy-transport problems and a new Hellinger–Kantorovich distance between positive measures”, Invent. Math., 211:3 (2018), 969–1117
- А. А. Липчюс, “Замечание о равенстве в задачах Монжа и Канторовича”, Теория вероятн. и ее примен., 50:4 (2005), 779–782
- Chong Liu, A. Neufeld, “Compactness criterion for semimartingale laws and semimartingale optimal transport”, Trans. Amer. Math. Soc., 372:1 (2019), 187–231
- W. Löhr, “Equivalence of Gromov–Prohorov- and Gromov's ${underlinesquare}_lambda$-metric on the space of metric measure spaces”, Electron. Commun. Probab., 18 (2013), 17, 10 pp.
- D. A. Lorenz, P. Manns, C. Meyer, “Quadratically regularized optimal transport”, Appl. Math. Optim., 83:3 (2021), 1919–1949
- A. Marchese, A. Massaccesi, S. Stuvard, R. Tione, “A multi-material transport problem with arbitrary marginals”, Calc. Var. Partial Differential Equations, 60:3 (2021), 88, 49 pp.
- R. J. McCann, L. Rifford, “The intrinsic dynamics of optimal transport”, J. Ec. Polytech. Math., 3 (2016), 67–98
- T. Mikami, Stochastic optimal transportation. Stochastic control with fixed marginals, SpringerBriefs Math., Springer, Singapore, 2021, xi+121 pp.
- A. Moameni, “A characterization for solutions of the Monge–Kantorovich mass transport problem”, Math. Ann., 365:3-4 (2016), 1279–1304
- A. Moameni, B. Pass, “Solutions to multi-marginal optimal transport problems concentrated on several graphs”, ESAIM Control Optim. Calc. Var., 23:2 (2017), 551–567
- A. Moameni, L. Rifford, “Uniquely minimizing costs for the Kantorovitch problem”, Ann. Fac. Sci. Toulouse Math. (6), 29:3 (2020), 507–563
- A. Neufeld, J. Sester, “On the stability of the martingale optimal transport problem: a set-valued map approach”, Statist. Probab. Lett., 176 (2021), 109131, 7 pp.
- B. Pass, “Multi-marginal optimal transport: theory and applications”, ESAIM Math. Model. Numer. Anal., 49:6 (2015), 1771–1790
- B. W. Pass, A. Vargas-Jimenez, “Multi-marginal optimal transportation problem for cyclic costs”, SIAM J. Math. Anal., 53:4 (2021), 4386–4400
- M. Petrache, “Cyclically monotone non-optimal $N$-marginal transport plans and Smirnov-type decompositions for $N$-flows”, ESAIM Control Optim. Calc. Var., 26 (2020), 120, 11 pp.
- G. Ch. Pflug, A. Pichler, Multistage stochastic optimization, Springer Ser. Oper. Res. Financ. Eng., Springer, Cham, 2014, xiv+301 pp.
- A. Pratelli, “On the equality between Monge's infimum and Kantorovich's minimum in optimal mass transportation”, Ann. Inst. H. Poincare Probab. Statist., 43:1 (2007), 1–13
- S. T. Rachev, L. Rüschendorf, Mass transportation problems, v. I, Probab. Appl. (N. Y.), Theory, Springer-Verlag, New York, 1998, xxvi+508 pp.
- P. Rigo, “A note on duality theorems in mass transportation”, J. Theoret. Probab., 33:4 (2020), 2337–2350
- F. Santambrogio, Optimal transport for applied mathematicians. Calculus of variations, PDEs, and modeling, Progr. Nonlinear Differential Equations Appl., 87, Birkhäuser/Springer, Cham, 2015, xxvii+353 pp.
- A. Savchenko, M. Zarichnyi, “Correspondences of probability measures with restricted marginals”, Proc. Intern. Geom. Center, 7:4 (2014), 34–39
- B. Schmitzer, B. Wirth, “A framework for Wasserstein-$1$-type metrics”, J. Convex Anal., 26:2 (2019), 353–396
- T. Shioya, Metric measure geometry. Gromov's theory of convergence and concentration of metrics and measures, IRMA Lect. Math. Theor. Phys., 25, EMS Publishing House, Zürich, 2016, xi+182 pp.
- В. М. Тихомиров, “Леонид Витальевич Канторович (к 100-летию со дня рождения)”, Истор.-матем. исслед., сер. 2, 15(50), Изд-во “Янус-К”, М., 2014, 16–24
- A. M. Vershik, “Long history of the Monge–Kantorovich transportation problem”, Math. Intelligencer, 35:4 (2013), 1–9
- А. М. Вершик, С. С. Кутателадзе, С. П. Новиков, “Леонид Витальевич Канторович (к 100-летию со дня рождения)”, УМН, 67:3(405) (2012), 185–191
- А. М. Вершик, П. Б. Затицкий, Ф. В. Петров, “Виртуальная непрерывность измеримых функций многих переменных и ее приложения”, УМН, 69:6(420) (2014), 81–114
- C. Villani, Topics in optimal transportation, Grad. Stud. Math., 58, Amer. Math. Soc., Providence, RI, 2003, xvi+370 pp.
- C. Villani, Optimal transport. Old and new, Grundlehren Math. Wiss., 338, Springer-Verlag, Berlin, 2009, xxii+973 pp.
- J. Wiesel, Continuity of the martingale optimal transport problem on the real line, 2022 (v1 – 2019), 46 pp.
- G. Wolansky, Optimal transport. A semi-discrete approach, De Gruyter Ser. Nonlinear Anal. Appl., 37, De Gruyter, Berlin, 2021, xii+208 pp.
- Д. А. Заев, “О задаче Монжа–Канторовича с дополнительными линейными ограничениями”, Матем. заметки, 98:5 (2015), 664–683
- Д. А. Заев, “Об эргодических разложениях, связанных с задачей Канторовича”, Теория представлений, динамические системы, комбинаторные методы. XXVI, Зап. науч. сем. ПОМИ, 437, ПОМИ, СПб., 2015, 100–130
- Xicheng Zhang, “Stochastic Monge–Kantorovich problem and its duality”, Stochastics, 85:1 (2013), 71–84
Supplementary files
