Dynamical $\mathfrak{sl}_2$ Bethe algebra and functions on pairs of quasi-polynomials

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We consider the space $\operatorname{Fun}_{\mathfrak{sl}_2}V[0]$ of functions on the Cartan subalgebra of $\mathfrak{sl}_2$ with values in the zero weight subspace $V[0]$ of a tensor product of irreducible finite-dimensional $\mathfrak{sl}_2$-modules. We consider the algebra $\mathcal B$ of commuting differential operators on $\operatorname{Fun}_{\mathfrak{sl}_2}V[0]$, constructed by Rubtsov, Silantyev, and Talalaev in 2009. We describe the relations between the action of $\mathcal B$ on $\operatorname{Fun}_{\mathfrak{sl}_2}V[0]$ and spaces of pairs of quasi-polynomials.Bibliography: 25 titles.

About the authors

Aleksandr Nikolaevich Varchenko

Department of Mathematics, University of North Carolina at Chapel Hill; Lomonosov Moscow State University, Faculty of Mechanics and Mathematics; Moscow Center for Fundamental and Applied Mathematics

Email: anv@email.unc.edu

Aleksei Mikhailovich Slinkin

Department of Mathematics, University of North Carolina at Chapel Hill; HSE University

Email: slinalex@live.unc.edu

Daniel Thompson

Department of Mathematics, University of North Carolina at Chapel Hill

Email: dthomp@email.unc.edu

References

  1. И. В. Чередник, “Обобщeнные группы кос и локальные $r$-матричные системы”, Докл. АН СССР, 307:1 (1989), 49–53
  2. P. Etingof, E. Frenkel, D. Kazhdan, Hecke operators and analytic Langlands correspondence for curves over local fields, 2021, 38 pp.
  3. P. I. Etingof, I. B. Frenkel, A. A. Kirillov, Jr., Lectures on representation theory and Knizhnik–Zamolodchikov equations, Math. Surveys Monogr., 58, Amer. Math. Soc., Providence, RI, 1998, xiv+198 pp.
  4. P. Etingof, A. Varchenko, “Dynamical Weyl groups and applications”, Adv. Math., 167:1 (2002), 74–127
  5. G. Felder, A. Varchenko, “Integral representation of solutions of the elliptic Knizhnik–Zamolodchikov–Bernard equations”, Int. Math. Res. Not. IMRN, 1995:5 (1995), 221–233
  6. G. Felder, A. Varchenko, “Three formulas for eigenfunctions of integrable Schrödinger operators”, Compos. Math., 107:2 (1997), 143–175
  7. G. Felder, C. Wieczerkowski, “Conformal blocks on elliptic curves and the Knizhnik–Zamolodchikov–Bernard equations”, Comm. Math. Phys., 176:1 (1996), 133–161
  8. E. Jensen, A. Varchenko, “Norms of eigenfunctions of trigonometric KZB operators”, Int. Math. Res. Not. IMRN, 2013:6 (2013), 1230–1267
  9. M. Kontsevich, “Notes on motives in finite characteristic”, Algebra, arithmetic, and geometry, In honor of Yu. I. Manin, v. II, Progr. Math., 270, Birkhäuser Boston, Inc., Boston, MA, 2009, 213–247
  10. Y. Markov, A. Varchenko, “Hypergeometric solutions of trigonometric KZ equations satisfy dynamical difference equations”, Adv. Math., 166:1 (2002), 100–147
  11. E. Mukhin, V. Tarasov, A. Varchenko, “Generating operator of XXX or Gaudin transfer matrices has quasi-exponential kernel”, SIGMA, 3 (2007), 060, 31 pp.
  12. E. Mukhin, V. Tarasov, A. Varchenko, “Spaces of quasi-exponentials and representations of $mathfrak{gl}_N$”, J. Phys. A, 41:19 (2008), 194017, 28 pp.
  13. E. Mukhin, V. Tarasov, A. Varchenko, “Schubert calculus and representations of the general linear group”, J. Amer. Math. Soc., 22:4 (2009), 909–940
  14. E. Mukhin, V. Tarasov, A. Varchenko, “On reality property of Wronski maps”, Confluentes Math., 1:2 (2009), 225–247
  15. E. Mukhin, V. Tarasov, A. Varchenko, “The B. and M. Shapiro conjecture in real algebraic geometry and the Bethe ansatz”, Ann. of Math. (2), 170:2 (2009), 863–881
  16. E. Mukhin, V. Tarasov, A. Varchenko, “Bethe algebra of the $frak{gl}_{N+1}$ Gaudin model and algebra of functions on the critical set of the master function”, New trends in quantum integrable systems, World Sci. Publ., Hackensack, NJ, 2011, 307–324
  17. E. Mukhin, A. Varchenko, “Norm of a Bethe vector and the Hessian of the master function”, Compos. Math., 141:4 (2005), 1012–1028
  18. E. Mukhin, A. Varchenko, “Quasi-polynomials and the Bethe ansatz”, Groups, homotopy and configuration spaces, Geom. Topol. Monogr., 13, Geom. Topol. Publ., Coventry, 2008, 385–420
  19. N. Reshetikhin, A. Varchenko, “Quasiclassical asymptotics of solutions to the KZ equations”, Geometry, topology & physics, Conf. Proc. Lecture Notes Geom. Topology, IV, Int. Press, Cambridge, MA, 1995, 293–322
  20. V. Rubtsov, A. Silantyev, D. Talalaev, “Manin matrices, quantum elliptic commutative families and characteristic polynomial of elliptic Gaudin model”, SIGMA, 5 (2009), 110, 22 pp.
  21. V. V. Schechtman, A. N. Varchenko, “Arrangements of hyperplanes and Lie algebra homology”, Invent. Math., 106:1 (1991), 139–194
  22. I. Scherbak, A. Varchenko, “Critical points of functions, $mathfrak{sl}_2$ representations, and Fuchsian differential equations with only univalued solutions”, Mosc. Math. J., 3:2 (2003), 621–645
  23. V. Tarasov, A. Varchenko, “Difference equations compatible with trigonometric KZ differential equations”, Int. Math. Res. Not. IMRN, 2000:15 (2000), 801–829
  24. D. Thompson, A. Varchenko, “Dynamical elliptic Bethe algebra, KZB eigenfunctions, and theta-polynomials”, LiMS, 1:1 (2019), 78–125
  25. A. Varchenko, “Quantum integrable model of an arrangement of hyperplanes”, SIGMA, 7 (2011), 032, 55 pp.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Varchenko A.N., Slinkin A.M., Thompson D.

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).