Dynamical $\mathfrak{sl}_2$ Bethe algebra and functions on pairs of quasi-polynomials
- Authors: Varchenko A.N.1,2,3, Slinkin A.M.1,4, Thompson D.1
-
Affiliations:
- Department of Mathematics, University of North Carolina at Chapel Hill
- Lomonosov Moscow State University, Faculty of Mechanics and Mathematics
- Moscow Center for Fundamental and Applied Mathematics
- HSE University
- Issue: Vol 76, No 4 (2021)
- Pages: 105-138
- Section: Articles
- URL: https://ogarev-online.ru/0042-1316/article/view/133674
- DOI: https://doi.org/10.4213/rm10010
- ID: 133674
Cite item
Abstract
About the authors
Aleksandr Nikolaevich Varchenko
Department of Mathematics, University of North Carolina at Chapel Hill; Lomonosov Moscow State University, Faculty of Mechanics and Mathematics; Moscow Center for Fundamental and Applied Mathematics
Email: anv@email.unc.edu
Aleksei Mikhailovich Slinkin
Department of Mathematics, University of North Carolina at Chapel Hill; HSE University
Email: slinalex@live.unc.edu
Daniel Thompson
Department of Mathematics, University of North Carolina at Chapel Hill
Email: dthomp@email.unc.edu
References
- И. В. Чередник, “Обобщeнные группы кос и локальные $r$-матричные системы”, Докл. АН СССР, 307:1 (1989), 49–53
- P. Etingof, E. Frenkel, D. Kazhdan, Hecke operators and analytic Langlands correspondence for curves over local fields, 2021, 38 pp.
- P. I. Etingof, I. B. Frenkel, A. A. Kirillov, Jr., Lectures on representation theory and Knizhnik–Zamolodchikov equations, Math. Surveys Monogr., 58, Amer. Math. Soc., Providence, RI, 1998, xiv+198 pp.
- P. Etingof, A. Varchenko, “Dynamical Weyl groups and applications”, Adv. Math., 167:1 (2002), 74–127
- G. Felder, A. Varchenko, “Integral representation of solutions of the elliptic Knizhnik–Zamolodchikov–Bernard equations”, Int. Math. Res. Not. IMRN, 1995:5 (1995), 221–233
- G. Felder, A. Varchenko, “Three formulas for eigenfunctions of integrable Schrödinger operators”, Compos. Math., 107:2 (1997), 143–175
- G. Felder, C. Wieczerkowski, “Conformal blocks on elliptic curves and the Knizhnik–Zamolodchikov–Bernard equations”, Comm. Math. Phys., 176:1 (1996), 133–161
- E. Jensen, A. Varchenko, “Norms of eigenfunctions of trigonometric KZB operators”, Int. Math. Res. Not. IMRN, 2013:6 (2013), 1230–1267
- M. Kontsevich, “Notes on motives in finite characteristic”, Algebra, arithmetic, and geometry, In honor of Yu. I. Manin, v. II, Progr. Math., 270, Birkhäuser Boston, Inc., Boston, MA, 2009, 213–247
- Y. Markov, A. Varchenko, “Hypergeometric solutions of trigonometric KZ equations satisfy dynamical difference equations”, Adv. Math., 166:1 (2002), 100–147
- E. Mukhin, V. Tarasov, A. Varchenko, “Generating operator of XXX or Gaudin transfer matrices has quasi-exponential kernel”, SIGMA, 3 (2007), 060, 31 pp.
- E. Mukhin, V. Tarasov, A. Varchenko, “Spaces of quasi-exponentials and representations of $mathfrak{gl}_N$”, J. Phys. A, 41:19 (2008), 194017, 28 pp.
- E. Mukhin, V. Tarasov, A. Varchenko, “Schubert calculus and representations of the general linear group”, J. Amer. Math. Soc., 22:4 (2009), 909–940
- E. Mukhin, V. Tarasov, A. Varchenko, “On reality property of Wronski maps”, Confluentes Math., 1:2 (2009), 225–247
- E. Mukhin, V. Tarasov, A. Varchenko, “The B. and M. Shapiro conjecture in real algebraic geometry and the Bethe ansatz”, Ann. of Math. (2), 170:2 (2009), 863–881
- E. Mukhin, V. Tarasov, A. Varchenko, “Bethe algebra of the $frak{gl}_{N+1}$ Gaudin model and algebra of functions on the critical set of the master function”, New trends in quantum integrable systems, World Sci. Publ., Hackensack, NJ, 2011, 307–324
- E. Mukhin, A. Varchenko, “Norm of a Bethe vector and the Hessian of the master function”, Compos. Math., 141:4 (2005), 1012–1028
- E. Mukhin, A. Varchenko, “Quasi-polynomials and the Bethe ansatz”, Groups, homotopy and configuration spaces, Geom. Topol. Monogr., 13, Geom. Topol. Publ., Coventry, 2008, 385–420
- N. Reshetikhin, A. Varchenko, “Quasiclassical asymptotics of solutions to the KZ equations”, Geometry, topology & physics, Conf. Proc. Lecture Notes Geom. Topology, IV, Int. Press, Cambridge, MA, 1995, 293–322
- V. Rubtsov, A. Silantyev, D. Talalaev, “Manin matrices, quantum elliptic commutative families and characteristic polynomial of elliptic Gaudin model”, SIGMA, 5 (2009), 110, 22 pp.
- V. V. Schechtman, A. N. Varchenko, “Arrangements of hyperplanes and Lie algebra homology”, Invent. Math., 106:1 (1991), 139–194
- I. Scherbak, A. Varchenko, “Critical points of functions, $mathfrak{sl}_2$ representations, and Fuchsian differential equations with only univalued solutions”, Mosc. Math. J., 3:2 (2003), 621–645
- V. Tarasov, A. Varchenko, “Difference equations compatible with trigonometric KZ differential equations”, Int. Math. Res. Not. IMRN, 2000:15 (2000), 801–829
- D. Thompson, A. Varchenko, “Dynamical elliptic Bethe algebra, KZB eigenfunctions, and theta-polynomials”, LiMS, 1:1 (2019), 78–125
- A. Varchenko, “Quantum integrable model of an arrangement of hyperplanes”, SIGMA, 7 (2011), 032, 55 pp.
Supplementary files
