On the resolution of singularities of one-dimensional foliations on three-manifolds
- Autores: Rebelo J.C.1, Reis H.2,3
-
Afiliações:
- Institut de Mathématiques de Toulouse
- Centro de Matemática da Universidade do Porto
- University of Porto
- Edição: Volume 76, Nº 2 (2021)
- Páginas: 103-176
- Seção: Articles
- URL: https://ogarev-online.ru/0042-1316/article/view/133655
- DOI: https://doi.org/10.4213/rm9993
- ID: 133655
Citar
Resumo
This paper is devoted to the resolution of singularities of holomorphic vector fields and one-dimensional holomorphic foliations in dimension three, and it has two main objectives. First, within the general framework of one-dimensional foliations, we build upon and essentially complete the work of Cano, Roche, and Spivakovsky (2014). As a consequence, we obtain a general resolution theorem comparable to the resolution theorem of McQuillan–Panazzolo (2013) but proved by means of rather different methods.The other objective of this paper is to consider a special class of singularities of foliations containing, in particular, all the singularities ofcomplete holomorphic vector fields on complex manifolds of dimension three. We then prove that a much sharper resolution theorem holds for this class of holomorphic foliations. This second result was the initial motivation for this paper. It relies on combining earlier resolution theorems for (general) foliations with some classical material on asymptotic expansions for solutions of differential equations.Bibliography: 34 titles.
Sobre autores
Julio Rebelo
Institut de Mathématiques de Toulouse
Email: jrebelo@math.sunysb.edu
Helena Reis
Centro de Matemática da Universidade do Porto; University of Porto
Bibliografia
- M. Abate, “The residual index and the dynamics of holomorphic maps tangent to the identity”, Duke Math. J., 107:1 (2001), 173–207
- В. И. Арнольд, Ю. С. Ильяшенко, “Обыкновенные дифференциальные уравнения”, Динамические системы – 1, Итоги науки и техники. Сер. Соврем. пробл. матем. Фундам. напр., 1, ВИНИТИ, М., 1985, 7–140
- М. Атья, Н. Хитчин, Геометрия и динамика магнитных монополей, Мир, М., 1991, 150 с.
- F. E. Brochero Martinez, F. Cano, L. Lopez-Hernanz, “Parabolic curves for diffeomorphisms in $mathbb{C}^2$”, Publ. Mat., 52:1 (2008), 189–194
- C. Camacho, A. Lins Neto, P. Sad, “Topological invariants and equidesingularization for holomorphic vector fields”, J. Differential Geom., 20:1 (1984), 143–174
- C. Camacho, P. Sad, “Invariant varieties through singularities of holomorphic vector fields”, Ann. of Math. (2), 115:3 (1982), 579–595
- F. Cano, “Reduction of the singularities of codimension one singular foliations in dimension three”, Ann. of Math. (2), 160:3 (2004), 907–1011
- F. Cano, C. Roche, “Vector fields tangent to foliations and blow-ups”, J. Singul., 9 (2014), 43–49
- F. Cano, C. Roche, M. Spivakovsky, “Reduction of singularities of three-dimensional line foliations”, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM, 108:1 (2014), 221–258
- F. Cano Torres, Desingularization strategies for three-dimensional vector fields, Lecture Notes in Math., 1259, Springer-Verlag, Berlin, 1987, x+194 pp.
- R. Conte (ed.), The Painleve property. One century later, CRM Ser. Math. Phys., Springer-Verlag, New York, 1999, xxvi+810 pp.
- G. Dloussky, K. Oeljeklaus, M. Toma, “Surfaces de la classe $mathrm{VII}_0$ admettant un champ de vecteurs”, Comment. Math. Helv., 75:2 (2000), 255–270
- П. М. Елизаров, Ю. С. Ильяшенко, “Замечания об орбитальной аналитической классификации ростков векторных полей”, Матем. сб., 121(163):1(5) (1983), 111–126
- А. Э. Еременко, “Мероморфные решения алгебраических дифференциальных уравнений”, УМН, 37:4(226) (1982), 53–82
- E. Ghys, J. C. Rebelo, “Singularites des flots holomorphes. II”, Ann. Inst. Fourier (Grenoble), 47:4 (1997), 1117–1174
- A. Guillot, “Sur les equations d'Halphen et les actions de $operatorname{SL}_2(mathbf C)$”, Publ. Math. Inst. Hautes Etudes Sci., 105:1 (2007), 221–294
- A. Guillot, “The geometry of Chazy's homogeneous third-order differential equations”, Funkcial. Ekvac., 55:1 (2012), 67–87
- A. Guillot, J. C. Rebelo, “Semicomplete meromorphic vector fields on complex surfaces”, J. Reine Angew. Math., 2012:667 (2012), 27–65
- M. Hakim, Transformations tangent to the identity. Stable pieces of manifolds, Prepublication Orsay 97-30, Univ. de Paris-Sud, Orsay, 1997, 36 pp.
- M. Hakim, “Analytic transformations of $(mathbf{C}^p,0)$ tangent to the identity”, Duke Math. J., 92:2 (1998), 403–428
- Yu. Ilyashenko, S. Yakovenko, Lectures on analytic differential equations, Grad. Stud. Math., 86, Amer. Math. Soc., Providence, RI, 2008, xiv+625 pp.
- E. L. Ince, Ordinary differential equations, Reprint of the 1st ed., Dover Publications, New York, 1956, viii+558 pp.
- J. Malmquist, “Sur l'etude analytique des solutions d'un système d'equations differentielles dans le voisinage d'un point singulier d'indetermination. I”, Acta Math., 73 (1941), 87–129
- F. Martin, E. Royer, “Formes modulaires et periodes”, Formes modulaires et transcendance, Semin. Congr., 12, Soc. Math. France, Paris, 2005, 1–117
- J.-F. Mattei, R. Moussu, “Holonomie et integrales premières”, Ann. Sci. Ecole Norm. Sup. (4), 13:4 (1980), 469–523
- M. McQuillan, D. Panazzolo, “Almost etale resolution of foliations”, J. Differential Geometry, 95:2 (2013), 279–319
- D. Panazzolo, “Resolution of singularities of real-analytic vector fields in dimension three”, Acta Math., 197:2 (2006), 167–289
- O. Piltant, “An axiomatic version of Zariski's patching theorem”, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A Mat. RACSAM, 107:1 (2013), 91–121
- J.-P. Ramis, Y. Sibuya, “Hukuhara domains and fundamental existence and uniqueness theorems for asymptotic solutions of Gevrey type”, Asymptotic Anal., 2:1 (1989), 39–94
- J. C. Rebelo, “Singularites des flots holomorphes”, Ann. Inst. Fourier (Grenoble), 46:2 (1996), 411–428
- H. Reis, “Equivalence and semi-completude of foliations”, Nonlinear Anal., 64:8 (2006), 1654–1665
- H. Reis, “Semi-complete vector fields of saddle-node type in $mathbb C^n$”, Trans. Amer. Math. Soc., 360:12 (2008), 6611–6630
- A. Seidenberg, “Reduction of singularities of the differential equation $A dy=B dx$”, Amer. J. Math., 90 (1968), 248–269
- B. J. Weickert, “Attracting basins for automorphisms of $mathbf{C}^2$”, Invent. Math., 132:3 (1998), 581–605
Arquivos suplementares
