N G Basov's legacy: from the first masers to optical frequency standards

Capa

Citar

Texto integral

Resumo

The pioneering ideas of N G Basov, the centennial of whose birth was solemnly celebrated in 2022, laid the foundation for a number of modern research and technology areas in the field of quantum electronics and laser physics: from precision laser experiments aimed at testing the fundamental laws of physics to laser ignition of thermonuclear targets, from high-speed data transmission lines to laser welding and material processing. In this review paper, which was presented at the Basov centennial Scientific Session of the Physical Division of the Russian Academy of Sciences, we discuss the development and current state of the ‘firstborn’ of a series of scientific victories—the hydrogen maser (H-maser). The performance of H-masers is continuously being improved, and they are involved in solving a wide range of problems: time and frequency metrology, satellite navigation, and space radio astronomy. Russia is the recognized world leader in the development of maser technology, which is a brilliant example of the successful implementation of Basov's ideas. The natural development of this field is the advent of optical frequency standards, whose development prospects are discussed in the final part of the review.

Sobre autores

Aleksandr Belyaev

JSC "Vremya-CH"

V. Voronzov

JSC "Vremya-CH"

N. Demidov

JSC "Vremya-CH"

Ksenia Khabarova

P. N. Lebedev Physical Institute of the Russian Academy of Sciences

Candidate of physico-mathematical sciences, no status

Nikolay Kolachevsky

P. N. Lebedev Physical Institute of the Russian Academy of Sciences

Email: kolachevsky@lebedev.ru
Scopus Author ID: 6602852750
Doctor of physico-mathematical sciences

Bibliografia

  1. Басов Н. Г., Прохоров А. М., Всесоюз. конф. по радиоспектроскопии, май 1952 г., АН СССР
  2. Басов Н. Г., Прохоров А. М., УФН, 57 (1955), 485
  3. Kleppner D., Goldenberg H. M., Ramsey N. F., Phys. Rev., 126 (1962), 603
  4. Ramsey N. F., Angew. Chem. Int. Engl. Ed., 29 (1990), 725
  5. Hellwig H. et al., IEEE Trans. Instrum. Meas., 19 (1970), 200
  6. Weyers S. et al., Metrologia, 55 (2018), 789
  7. Mohr P. J., Taylor B. N., Rev. Mod. Phys., 77 (2005), 1
  8. Weaver H. et al., Nature, 208 (1965), 29
  9. Стрельницкий В. С., УФН, 113 (1974), 463
  10. Басов Н. Г., Летохов В. С., УФН, 96 (1968), 585
  11. Brewer S. M. et al., Phys. Rev. Lett., 123 (2019), 033201
  12. Safronova M. S. et al., Rev. Mod. Phys., 90 (2018), 025008
  13. Воронцов В. Г. и др., Отв. ред. Л. А. Токина, ВНИИФТРИ, Менделеево, 2018
  14. Table 4. Equipment and source of UTC(k) of the laboratories contributing to TAI in 2020
  15. Слюсарев С. Н. и др., Метрология времени и пространства. Международный симпозиум (Менделеево, Московская область, Россия, 12-14 сентября 2018), Отв. ред. Л. А. Токина, ВНИИФТРИ, Менделеево, 2018
  16. Haroche S. et al., Laser Spectroscopy IV, Proc. of the Fourth Intern. Conf. on Laser Specrroscopy (June 11-15, 1979, Rottach-Egern, Federal Republic of Germany), Springer Series in Optical Sciences, 21, Ed. A. L. Schawlow, Springer-Verlag, Berlin, 1979, 244
  17. Polyakov V., Timofeev Y., Demidov N., 2021 Joint Conf. of the European Frequency and Time Forum and IEEE Intern. Frequency Control Symp., EFTF/IFCS (Gainesville, FL, USA, 2021), IEEE, Piscataway, NJ, 2021, 1
  18. Басов Н. Г. и др., УФН, 75 (1961), 3
  19. Ashby N., Living Rev. Relativ., 6:1 (2003), 1
  20. Khabarova K., Nature, 602 (2022), 391
  21. Vessot R. F. C., Phys. Rev. Lett., 45 (1980), 2081
  22. Delva P. et al., Phys. Rev. Lett., 121 (2018), 231101
  23. Kovalev Y. Y. et al., 2014 XXXIth URSI General Assembly and Scientific Symp. (16-23 August 2014, Beijing, China)
  24. Smirov A. V. et al., Proc. SPIE, 8442 (2012), 1456
  25. Schiller S. et al.
  26. Бакитько Р. В. и др., ГЛОНАСС. Модернизация и перспективы развития, Радиотехника, М., 2020
  27. Mattioni L. et al., Proc. of the 34th Annual Precise Time and Time Interval Systems and Applications Meeting (December 3-5, 2002, Reston, Virginia)
  28. Rochat P. et al., Proc. of the 2005 IEEE Intern. Freqiency Control Symposium and Exposition 26 (Vancouver, 2005)
  29. Khabarova K. et al., Symmetry, 14 (2022), 2213
  30. Kolachevsky N. N. et al., Space, 5:1 (2018), 12
  31. Fischer M. et al., Phys. Rev. Lett., 92 (2004), 230802
  32. Bloom B. J. et al., Nature, 506 (2014), 71
  33. Ushijima I. et al., Nat. Photon., 9 (2015), 185
  34. Huang Y. et al., Phys. Rev. Appl., 17 (2022), 034041
  35. Huntermann N. et al., Phys. Rev. Lett., 116 (2016), 063001
  36. Хабарова К. Ю., Заливако И. В., Колачевский Н. Н., УФН, 192 (2022), 1305
  37. Вишнякова Г. А. и др., УФН, 186 (2016), 176
  38. Kalganova E. et al., Phys. Rev. A, 96 (2017), 033418
  39. Takamoto M. et al., Nature, 435 (2005), 321
  40. Tregubov D. O. et al., Quantum Electron., 49 (2019), 1028
  41. Zhang A. et al., Metrologia, 59 (2022), 065009
  42. Ludlow A. D. et al., Rev. Mod. Phys., 87 (2015), 637
  43. Golovizin A., Nat. Commun., 10 (2019), 1724
  44. Golovizin A. et al., Opt. Express, 29 (2021), 36734
  45. Yudin V. I. et al., Phys. Rev. Lett., 107 (2011), 030801
  46. Golovizin A. et al., Nat. Commun., 12 (2021), 5171
  47. Kessler T. et al., Nat. Photon., 6 (2012), 687
  48. Mehlstaeubler T. E. et al., Rep. Prog. Phys., 81 (2018), 064401
  49. Takamoto M. et al., Nat. Photon., 14 (2020), 411
  50. Huang Y. et al., Phys. Rev. A, 102 (2020), 050802
  51. Dick G. J. et al., Proc. of the 22nd Annual Precise Time and Time Interval Systems and Applications Meeting (December 4-6, 1990, Vienna, Virginia), 487
  52. Oelker E. et al., Nat. Photon., 13 (2019), 714
  53. Takamoto M. et al., C.R. Phys., 16 (2015), 489
  54. Katori H., Appl. Phys. Express, 14 (2021), 072006
  55. Norcia M. A., Thompson J. K., Phys. Rev. X, 6 (2016), 011025
  56. Mishin D. et al., Appl. Phys. Express, 14 (2021), 112006
  57. Jallageas A. et al., J. Phys. Conf. Ser., 723 (2016), 012010
  58. Bothwell T. et al., Nature, 602 (2022), 420
  59. Николай Геннадиевич Басов, 100 лет со дня рождения, Изд-во РМП, М., 2022
  60. King S. A. et al., Nature, 611 (2022), 43
  61. Kazakov G. A. et al., New J. Phys., 14 (2012), 083019
  62. Campbell C. J. et al., Phys. Rev. Lett., 108 (2012), 120802
  63. Brasch V. et al., Science, 351 (2016), 357

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).