БЦЖ, мурамилпептиды, тренированный иммунитет (часть I): взаимосвязи в свете пандемии COVID-19

Обложка

Цитировать

Полный текст

Аннотация

Давно известно, что вакцина на основе аттенуированного штамма Mycobacterium bovis (Bacillus Calmette–Guérin; БЦЖ) обеспечивает неспецифическую защиту от многих немикобактериальных инфекций, что в последнее десятилетие обсуждается через призму концепции тренированного иммунитета. В рамках этой концепции стойкое повышение сопротивляемости разнообразным патогенам, возникающее после перенесенной инфекции или воздействия некоторых микробных агентов, связывают с эпигенетическим репрограммированием клеток врожденного иммунитета и их костномозговых предшественников. Пандемия COVID-19 сфокусировала внимание ученых и практикующих врачей на БЦЖ как индукторе тренированного иммунитета. В ряде эпидемиологических исследований выявлена негативная связь между охватом населения БЦЖ-иммунизацией и бременем SARS-CoV-2-инфекции. Стартовала целая серия независимых клинических исследований эффективности этой вакцины в неспецифической профилактике COVID-19 в разных странах. Недавно доказана ключевая роль цитозольных рецепторов NOD2 в БЦЖ-индуцированном тренированном иммунитете. Это актуализирует поиск действенных иммуноактивных препаратов для предотвращения респираторных инфекций в условиях пандемии среди низкомолекулярных фрагментов пептидогликана клеточной стенки бактерий – мурамилпептидов (МП) – как агонистов NOD2. В обзоре освещены доказанные и предполагаемые взаимосвязи БЦЖ, МП, NOD2 и тренированного иммунитета в свете пандемии COVID-19. Анализ представленных данных свидетельствует о перспективности доклинических и клинических исследований МП как средств неспецифической профилактики SARS-CoV-2-инфекции и/или других респираторных инфекций в группах риска в период пандемии. В первую очередь это относится к глюкозаминилмурамилдипептиду, разрешенному к клиническому применению в России и ряде постсоветских стран для комплексного лечения и профилактики острых и рецидивирующих респираторных инфекций.

Об авторах

Олег Витальевич Калюжин

ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» Минздрава России (Сеченовский Университет)

Автор, ответственный за переписку.
Email: kalyuzhin@list.ru
ORCID iD: 0000-0003-3628-2436

д.м.н., проф., проф. каф.

Россия, Москва

Татьяна Михайловна Андронова

АО «Пептек»

Email: kalyuzhin@list.ru
ORCID iD: 0000-0001-6166-8635

к.х.н., президент

Россия, Москва

Александр Викторович Караулов

ФГАОУ ВО «Первый Московский государственный медицинский университет им. И.М. Сеченова» Минздрава России (Сеченовский Университет)

Email: kalyuzhin@list.ru
ORCID iD: 0000-0002-1930-5424

акад. РАН, д.м.н., проф., зав. каф.

Россия, Москва

Список литературы

  1. Shann F. Nonspecific effects of vaccines and the reduction of mortality in children. Clin Ther. 2013;35(2):109-14. doi: 10.1016/j.clinthera.2013.01.007
  2. Netea MG, Quintin J, van der Meer JW. Trained immunity: a memory for innate host defense. Cell Host Microbe. 2011;9(5):355-61. doi: 10.1016/j.chom.2011.04.006
  3. Kleinnijenhuis J, Quintin J, Preijers F, et al. Bacille Calmette-Guerin induces NOD2-dependent nonspecific protection from reinfection via epigenetic reprogramming of monocytes. Proc Natl Acad Sci USA. 2012;109(43):17537-42. doi: 10.1073/pnas.1202870109
  4. Cirovic B, de Bree LCJ, Groh L, et al. BCG Vaccination in Humans Elicits Trained Immunity via the Hematopoietic Progenitor Compartment. Cell Host Microbe. 2020;28(2):322-34. doi: 10.1016/j.chom.2020.05.014
  5. World Health Organization (WHO). Coronavirus disease 2019 (COVID-19) situation report – 51. 2020. March 11. https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200311-sitrep-51-covid-19.pdf?sfvrsn=1ba62e57_10.
  6. Miller A, Reandelar MJ, Fasciglione K, et al. Correlation between universal BCG vaccination policy and reduced mortality for COVID-19. medRxiv. 2020.03.24.20042937. doi: 10.1101/2020.03.24.20042937
  7. Hegarty PK, Sfakianos JP, Giannarini G, et al. COVID-19 and Bacillus Calmette-Guérin: What is the Link? Eur Urol Oncol. 2020;3(3):259-61. doi: 10.1016/j.euo.2020.04.001
  8. O’Neill LAJ, Netea MG. BCG-induced trained immunity: can it offer protection against COVID-19? Nat Rev Immunol. 2020;20(6):335-7. doi: 10.1038/s41577-020-0337-y
  9. Reducing Health Care Workers Absenteeism in Covid-19 Pandemic Through BCG Vaccine (BCG-CORONA). https://clinicaltrials.gov/ ct2/show/NCT04328441.
  10. BCG Vaccination to Protect Healthcare Workers Against COVID-19 (BRACE). https://clinicaltrials.gov/ct2/show/NCT04327206.
  11. Windheim M, Lang C, Peggie M, et al. Molecular mechanisms involved in the regulation of cytokine production by muramyl dipeptide. Biochem J. 2007;404(Pt 2):179-90. doi: 10.1042/BJ20061704
  12. Meshcheryakova E, Makarov E, Philpott D, et al. Evidence for correlation between the intensities of adjuvant effects and NOD2 activation by monomeric, dimeric and lipophylic derivatives of N-acetylglucosaminyl-N-acetylmuramyl peptides. Vaccine. 2007;25(23):4515-20. doi: 10.1016/j.vaccine.2007.04.006
  13. Dagil YA, Arbatsky NP, Pashenkov MV, et al. The dual NOD1/NOD2 agonism of muropeptides containing a meso-diaminopimelic acid residue. PLoS ONE. 2016;11(8):e0160784. doi: 10.1371/journal.pone.0160784
  14. Пинегин Б.В., Пащенков М.В. Иммуностимуляторы мурамилпептидной природы в лечении и профилактике инфекционно-воспалительных процессов. Иммунология. 2019;40(3):65-71 [Pinegin BV, Pashchenkov MV. Immunostimulators of muramylpeptide nature in the treatment and prevention of infectious-inflammatory processes. Immunologiya. 2019;40(3):65-71 (In Russ.)]. doi: 10.24411/02064952-2019-13007
  15. Luca S, Mihaescu T. History of BCG Vaccine. Maedica (Buchar). 2013;8(1):53-8.
  16. Stensballe LG, Nante E, Jensen IP, et al. Acute lower respiratory tract infections and respiratory syncytial virus in infants in Guinea-Bissau: a beneficial effect of BCG vaccination for girls community based case-control study. Vaccine. 2005;23(10):1251-7. doi: 10.1016/j.vaccine.2004.09.006
  17. Biering-Sørensen S, Jensen KJ, Monterio I, et al. Rapid Protective Effects of Early BCG on Neonatal Mortality Among Low Birth Weight Boys: Observations From Randomized Trials. J Infect Dis. 2018;217(5):759-66. doi: 10.1093/infdis/jix612
  18. Nemes E, Geldenhuys H, Rozot V, et al. Prevention of M. tuberculosis Infection with H4:IC31 Vaccine or BCG Revaccination. N Engl J Med. 2018;379(2):138-49. doi: 10.1056/NEJMoa1714021
  19. Wardhana, Datau EA, Sultana A, et al. The efficacy of Bacillus Calmette-Guerin vaccinations for the prevention of acute upper respiratory tract infection in the elderly. Acta Med Indones. 2011;43(3):185-90.
  20. Ohrui T, Nakayama K, Fukushima T, et al. [Prevention of elderly pneumonia by pneumococcal, influenza and BCG vaccinations]. Nihon Ronen Igakkai Zasshi. 2005;42(1):34-6. doi: 10.3143/geriatrics.42.34
  21. Benn CS, Netea MG, Selin LK, Aaby P. A small jab – a big effect: nonspecific immunomodulation by vaccines. Trends Immunol. 2013;34(9):431-9. doi: 10.1016/j.it.2013.04.004
  22. Netea MG, Joosten LA, Latz E, et al. Trained immunity: A program of innate immune memory in health and disease. Science. 2016;352(6284):aaf1098. doi: 10.1126/science.aaf1098
  23. Dangl JL, Jones JD. Plant pathogens and integrated defence responses to infection. Nature. 2001;411(6839):826-33. doi: 10.1038/35081161
  24. Kurtz J. Specific memory within innate immune systems. Trends Immunol. 2005;26(4):186-92. doi: 10.1016/j.it.2005.02.001
  25. Netea MG. Training innate immunity: the changing concept of immunological memory in innate host defence. Eur J Clin Invest. 2013;43(8):881-4. doi: 10.1111/eci.12132
  26. Levy O, Netea MG. Innate immune memory: implications for development of pediatric immunomodulatory agents and adjuvanted vaccines. Pediatr Res. 2014;75:184-8. doi: 10.1038/pr.2013.214
  27. Quintin J, Cheng SC, van der Meer JW, Netea MG. Innate immune memory: towards a better understanding of host defense mechanisms. Curr Opin Immunol. 2014;29C;1-7. doi: 10.1016/j.coi.2014.02.006
  28. Kar UK, Joosten LAB. Training the trainable cells of the immune system and beyond. Nat Immunol. 2020;21:115-9. doi: 10.1038/s41590-019-0583-y
  29. Mitroulis I, Ruppova K, Wang B, et al. Modulation of Myelopoiesis Progenitors Is an Integral Component of Trained Immunity. Cell. 2018;172(1-2):147-61.e12. doi: 10.1016/j.cell.2017.11.034
  30. van der Meer JW, Joosten LA, Riksen N, Netea MG. Trained immunity: A smart way to enhance innate immune defence. Mol Immunol. 2015;68(1):40-4. doi: 10.1016/j.molimm.2015.06.019
  31. Калюжин О.В. Феномен тренированного иммунитета и механизмы действия неспецифических иммуномодуляторов. Рос. аллергол. журн. 2015;12(4):45-51 [Kalyuzhin OV. The trained immunity phenomenon and mechanisms of action of non-specific immunomodifiers. Russian Journal of Allergy. 2015;12(4):45-51 (In Russ.)]. doi: 10.36691/RJA444
  32. Калюжин О.В. Феномен тренированного иммунитета и механизмы действия неспецифических иммуностимуляторов. Аллергология и иммунология. 2016;17(3):186-8 [Kalyuzhin OV. The trained immunity phenomenon and mechanisms of action of non-specific immunostimulants. Allergologiya i immunologiya. 2016;17(3):186-8. (In Russ.)]. http://isir.ru/files/uploaded/AI_2016_N3_161-22023022017.pdf.
  33. Kalyuzhin O. The mechanisms of action of non-specific immunostimulants through the prism of the “trained immunity” concept. In: Sepiashvili R, eds. Allergy, Asthma & Immunophysiology: Innovative Technologies. Bologna: Filodiritto Proceedings; 2016, p. 373-8. https://www.filodiritto.com/proceedings.
  34. Hegarty P, Kamat A, Zafirakis H, Dinardo A. BCG vaccination may be protective against Covid-19. Research Gate. 2020. doi: 10.13140/RG.2.2.35948.10880
  35. Reducing COVID-19 Related Hospital Admission in Elderly by BCG Vaccination. https://clinicaltrials.gov/ct2/show/NCT04417335.
  36. Ten Doesschate T, Moorlag SJCFM, van der Vaart TW, et al. Two Randomized Controlled Trials of Bacillus Calmette-Guérin Vaccination to reduce absenteeism among health care workers and hospital admission by elderly persons during the COVID-19 pandemic: A structured summary of the study protocols for two randomised controlled trials. Trials. 2020;21(1):481. doi: 10.1186/s13063-020-04389-w
  37. WHO. Bacille Calmette-Guérin (BCG) vaccination and COVID-19: Scientific brief. https://www.who.int/publications/i/item/bacille-calmette-guérin-(bcg)-vaccination-and-covid-19.
  38. Gursel M, Gursel I. Is global BCG vaccination-induced trained immunity relevant to the progression of SARS-CoV-2 pandemic? Allergy. 2020;75(7):1815-9. doi: 10.1111/all.14345.
  39. Ozdemir C, Kucuksezer UC, Tamay ZU. Is BCG vaccination affecting the spread and severity of COVID-19? Allergy. 2020;75(7):1824-7. doi: 10.1111/all.14344
  40. Osama El-Gendy A, Saeed H, Ali AMA, et al. Bacillus Calmette-Guérin vaccine, antimalarial, age and gender relation to COVID-19 spread and mortality. Vaccine. 2020;38(35):5564-8. doi: 10.1016/j.vaccine.2020.06.083
  41. Sharma A, Kumar Sharma S, Shi Y, et al. BCG vaccination policy and preventive chloroquine usage: do they have an impact on COVID-19 pandemic? Cell Death Dis. 2020;11(7):516. doi: 10.1038/s41419-020-2720-9
  42. Urashima M, Otani K, Hasegawa Y, Akutsu T. BCG Vaccination and Mortality of COVID-19 across 173 Countries: An Ecological Study. Int J Environ Res Public Health. 2020;17(15):5589. doi: 10.3390/ijerph17155589
  43. Green CM, Fanucchi S, Fok ET, et al. COVID-19: A model correlating BCG vaccination to protection from mortality implicates trained immunity. medRxiv. 2020.04.10.20060905. doi: 10.1101/2020.04.10.20060905
  44. David P, Shoenfeld Y. Bacillus Calmette-Guerin (BCG) as a Protective Factor for COVID-19? Isr Med Assoc J. 2020;8(22):448-9.
  45. O’Connor E, Teh J, Kamat AM, Lawrentschuk N. Bacillus Calmette Guérin (BCG) vaccination use in the fight against COVID-19 – what’s old is new again? Future Oncol. 2020;16(19):1323-5. doi: 10.2217/fon-2020-0381
  46. Riccò M, Gualerzi G, Ranzieri S, Bragazzi NL. Stop playing with data: there is no sound evidence that Bacille Calmette-Guérin may avoid SARS-CoV-2 infection (for now). Acta Biomed. 2020;91(2):207-13. doi: 10.23750/abm.v91i2.9700
  47. Hamiel U, Kozer E, Youngster I. SARS-CoV-2 Rates in BCG-Vaccinated and Unvaccinated Young Adults. JAMA. 2020;323(22):2340-1. doi: 10.1001/jama.2020.8189
  48. Meena J, Yadav A, Kumar J. BCG Vaccination Policy and Protection Against COVID-19. Indian J Pediatr. 2020;87(9):749. doi: 10.1007/s12098-020-03371-3
  49. Search of: BCG/Covid19 – List Results – ClinicalTrials.gov. Accessed September 8, 2020. https://clinicaltrials.gov/ct2/results?cond= Covid19&term=BCG&cntry=&state=&city=&dist=.
  50. Tomita Y, Sato R, Ikeda T, Sakagami T. BCG vaccine may generate cross-reactive T cells against SARS-CoV-2: In silico analyses and a hypothesis. Vaccine. 2020;38(41):6352-6. doi: 10.1016/j.vaccine.2020.08.045
  51. Moorlag SJCFM, Arts RJW, van Crevel R, Netea MG. Non-specific effects of BCG vaccine on viral infections. Clin Microbiol Infect. 2019;25(12):1473-8. doi: 10.1016/j.cmi.2019.04.020
  52. Караулов А.В., Калюжин О.В. Сфера применения мурамилпептидов в рамках основных подходов к иммунотерапии/иммунопрофилактике инфекционных болезней. Физиология и патология иммунной системы. Иммунофармакогеномика. 2013;17(5):3-15 [Karaulov AV, Kalyuzhin OV. Sphere of muramyl dipeptide application within the major approaches to immunotherapy/prophylaxis of infectious diseases. Fiziologiya i patologiya immunnoj sistemy. Immunofarmakogenomika. 2013;17(5):3-15 (In Russ.)].
  53. Караулов А.В., Калюжин О.В. Иммунотерапия инфекционных болезней: проблемы и перспективы. Терапевтический архив. 2013; 85(11):100-8 [Karaulov AV, Kalyuzhin OV. Immunotherapy for infectious diseases: challenges and prospects. Therapeutic Archive. 2013;85(11):100-8 (In Russ.)].
  54. Буркин А.В., Свистушкин В.М., Никифорова Г.Н., Духанин А.С. Глюкозаминилмурамилдипептид в терапии инфекционных заболеваний респираторного тракта. Вестн. оториноларингологии. 2019;84(6):118-31 [Burkin AV, Svistushkin VM, Nikiforova GN, Dukhanin AS. Glucosaminylmuramyl dipeptide in treatment of respiratory tract diseases. Vestn. Otorinolaringolii. 2019;84(6):118-31 (In Russ.)]. doi: 10.17116/otorino201984061118

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© ООО "Консилиум Медикум", 2020

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 
 


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).