Biomarkers in acute coronary syndromes: from the origins to the present

Cover Page

Cite item

Full Text

Abstract

Acute coronary syndrome remains the leading cause of death in both patients with coronary artery disease and patients with other diseases (such as diabetes mellitus, chronic kidney disease, inflammatory diseases of various etiologies, and others). Early diagnosis of cardiomyocyte damage and necrosis opens up wide opportunities to improve the prognosis of patients with atherosclerotic lesions of the coronary arteries, and also makes it possible to discharge patients without acute cardiovascular pathology from intensive care units with a high degree of probability. The article discusses the evolution of the research and introduction into broad clinical practice of markers of myocardial damage and necrosis, which have largely improved modern clinical practice.

About the authors

Elena A. Okisheva

Sechenov First Moscow State Medical University (Sechenov University)

Author for correspondence.
Email: e.okisheva@gmail.com
ORCID iD: 0000-0003-2977-7203

ассистент каф. факультетской терапии №1

Russian Federation, Moscow

Olga Iu. Trushina

Sechenov First Moscow State Medical University (Sechenov University)

Email: e.okisheva@gmail.com
ORCID iD: 0000-0002-5820-1759

доктор медицинских наук, профессор каф. факультетской терапии №1

Russian Federation, Moscow

References

  1. Thygesen K, Alpert JS, Jaffe AS, et al. Fourth universal definition of myocardial infarction (2018). Eur Heart J. 2019;40(3):237-69. doi: 10.1093/eurheartj/ehy462
  2. LaDue JS, Wroblewski F, Karmen A Serum glutamic oxaloacetic transaminase activity in human acute transmural myocardial infarction. Science. 1954;120:497-9. doi: 10.1126/science.120.3117.497
  3. World Health Organization Expert Committee. Hypertension and coronary heart disease: classification and criteria for epidemiological studies. First report of the expert committee on cardiovascular diseases and hypertension. WHO Tech Rep Ser. 1959;168.
  4. Dreyfus JC, Schapira G, Rasnais J, et al. Serum creatine kinase in the diagnosis of myocardial infarct. Rev Fr Etud Clin Biol. 1960;5:386-7.
  5. Roberts R, Sobel BE, Parker CW. Radioimmunoassay for creatine kinase isoenzymes. Science. 1976;194:855-7. doi: 10.1126/science.982049
  6. World Health Organization. Report of the Joint International Society and Federation of Cardiology/World Health Organization Task Force on Standardization of Clinical Nomenclature. Nomenclature and criteria for diagnosis of ischemic heart disease. Circulation. 1979;59:607-9. doi: 10.1161/01.cir.59.3.607
  7. Danese E, Montagnana M. An historical approach to the diagnostic biomarkers of acute coronary syndrome. Ann Transl Med. 4:194. doi: 10.21037/atm.2016.05.19
  8. Ebashi S. Third component participating in the superprecipitation of ‘natural actomyosin’. Nature. 1963;200:1010. doi: 10.1038/2001010a0
  9. Greaser ML, Gergely J. Reconstitution of troponin activity from three protein components. J Biol Chem. 1971;246:4226-33. doi: 10.1016/S0021-9258(18)62075-7
  10. Bucher EA, Maisonpierre PC, Konieczny SF, et al. Expression of the troponin complex genes: transcriptional coactivation during myoblast differentiation and independent control in heart and skeletal muscles. Mol Cell Biol. 1988;8:4134-42. DOI:10.1128%2Fmcb.8.10.4134
  11. Cummins B, Auckland ML, Cummins P. Cardiac-specific troponin-I radioimmunoassay in the diagnosis of acute myocardial infarction. Am Heart J. 1987;113:1333-44. doi: 10.1016/0002-8703(87)90645-4
  12. Müller-Bardorff M, Hallermeyer K, Schroder A, et al. Improved Troponin T ELISA specific for cardiac Troponin T isoform: assay development and analytical and clinical validation. Clin Chem. 1997;43:458-66.
  13. Hallermayer K, Klenner D, Vogel R. Use of recombinant human cardiac Troponin T for standardization of third generation Troponin T methods. Scand J Clin Lab Invest. Suppl. 1999;230:128-31.
  14. Giannitsis E, Kurz K, Hallermayer K, et al. Analytical validation of a high-sensitivity cardiac troponin T assay. Clin Chem. 2010;56:254-61. doi: 10.1373/clinchem.2009.132654
  15. Zhelev Z, Hyde C, Youngman E, et al. Diagnostic accuracy of single baseline measurement of Elecsys Troponin T high-sensitive assay for diagnosis of acute myocardial infarction in emergency department: systematic review and meta-analysis BMJ. 2015;350:h15. doi: 10.1136/bmj.h15
  16. Røysland R, Kravdal G, Høiseth AD, et al. Cardiac troponin T levels and exercise stress testing in patients with suspected coronary artery disease: the Akershus Cardiac Examination (ACE) 1 study. Clin Sci (Lond). 2012;122(12):599-606. doi: 10.1042/CS20110557
  17. Jeremias A, Gibson CM. Narrative Review: Alternative Causes for Elevated Cardiac Troponin Levels when Acute Coronary Syndromes Are Excluded. Ann Intern Med. 2005;142:786-91. doi: 10.7326/0003-4819-142-9-200505030-00015
  18. Garg P, Morris P, Fazlanie AL, et al. Cardiac biomarkers of acute coronary syndrome: from history to high-sensitivity cardiac troponin. Intern Emerg Med. 2017;12(2):147-55. doi: 10.1007/s11739-017-1612-1
  19. Миронова О.Ю., Бердышева М.В., Елфимова Е.М. МикроРНК: взгляд клинициста на состояние проблемы. Часть 2. МикроРНК в качестве биомаркера. Евразийский Кардиологический Журнал. 2023;(2):64-71 [Mironova OI, Berdysheva MV, Elfimova EM. MicroRNA: a clinician’s view of the state of the problem. Part 2. MicroRNA as a biomarker. Eurasian Heart Journal. 2023;(2):64-71 (in Russian)]. doi: 10.38109/2225-1685-2023-2-64-71
  20. Wang GK, Zhu JQ, Zhang JT, et al. Circulating microRNA: a novel potential biomarker for early diagnosis of acute myocardial infarction in humans. Eur Heart J. 2010;31(6):659-66. doi: 10.1093/eurheartj/ehq013
  21. Wang X, Tian L, Sun Q. Diagnostic and prognostic value of circulating miRNA-499 and miRNA-22 in acute myocardial infarction. J Clin Lab Anal. 2020;34(8):2410-7. doi: 10.1002/jcla.23332
  22. Shi S, Yi JL. S100A8/A9 promotes MMP-9 expression in the fibroblasts from cardiac rupture after myocardial infarction by inducing macrophages secreting TNFα. Eur Rev Med Pharmacol Sci. 2018;22(12):3925-35. doi: 10.26355/eurrev_201806_15278
  23. Li Y, Chen B, Yang X, et al. S100a8/a9 Signaling Causes Mitochondrial Dysfunction and Cardiomyocyte Death in Response to Ischemic/Reperfusion Injury. Circulation. 2019;140(9):751-64. doi: 10.1161/CIRCULATIONAHA.118.039262
  24. Singh N, Rathore V, Mahat RK, Rastogi P. Glycogen Phosphorylase BB: A more Sensitive and Specific Marker than Other Cardiac Markers for Early Diagnosis of Acute Myocardial Infarction. Indian J Clin Biochem. 2018;33(3):356-60. doi: 10.1007/s12291-017-0685-y

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Timeline of the cardiac biomarkers use for the diagnosis of acute myocardial infarction.

Download (45KB)
3. Fig. 2. Hs-сTnT as a quantitative marker. The lower the level of hs-cTn, the higher the negative predictive value (NPV) for the presence of AMI. The higher the level of hs-cTn, the higher the positive predictive value (PPV) for the presence of AMI. Levels just above the 99th percentile have a low PPV for AMI [18].

Download (120KB)

Copyright (c) 2024 Consilium Medicum

Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
 
 


Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).