Peculiarities of Interaction of Dimethylphosphate-Containing Ionic Liquids with Elemental Sulfur in Various Media

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Studying the patterns of interaction of ionic liquids with elemental sulfur is of particular practical interest since the S8 ring-opening is the key stage in many chemical and technological processes. However, it involves significant energy costs. In this work, by the example of 1,3-dimethylimidazolium dimethylphosphate, the peculiarities of the reaction between dimethylphosphate-containing ionic liquids and elemental sulfur in organic solvents, leading to the opening of the sulfur ring at room temperature, are considered.

About the authors

N. P Tarasova

D.I. Mendeleev Russian University of Chemical Technology

Moscow, Russian Federation

S. A Muradyan

D.I. Mendeleev Russian University of Chemical Technology

Email: muradian.s.a@muctr.ru
Moscow, Russian Federation

V. K Balezina

D.I. Mendeleev Russian University of Chemical Technology

Moscow, Russian Federation

E. G Krivoborodov

D.I. Mendeleev Russian University of Chemical Technology

Moscow, Russian Federation

References

  1. Nguyen T. Recent Advances in the Synthesis of Heterocycles via Reactions Involving Elemental Sulfur // Advanced synthesis and catalysis. 2020. V. 362. P. 3448. https://doi.org/10.1002/adsc.202000535
  2. Tarasova N.P., Zanin A.A., Krivoborodov E.G., Mezhuev Ya.O. Elemental sulphur in the synthesis of sulphur-containing polymers: reaction mechanisms and green prospects // RSC Advances. 2021. V. 11. P. 9008. https://doi.org/10.1039/D0RA10507D
  3. Bishimbayeva G., Zhumabayeva D., Umbetova S., Sadieva Kh., Berkinova Z. Applications of sulfur polymer composites – perspective // Industrial Technology and Engineering. 2016. V. 2. P. 16. https://www.elibrary.ru/download/elibrary_38572743_80368478.pdf
  4. Beloev I., Filimonova A., Chichirov A., Chichirova N., Filimonov A., Iliev I. Utilization of Hydrogen-Containing Gas Waste from Deep Oil Refining at a Hybrid Power Plant with a Solid Oxide Fuel Cell // Engineering Proceedings. 2024. V. 60. P. 5. https://doi.org/10.3390/engproc2024060005
  5. Polshettiwar V., Kaushik M.P. Recent advances in thionating reagents for the synthesis of organosulfur compounds // Journal of Sulfur Chemistry. 2006. Vol. 27. P. 353. https://doi.org/10.1080/17415990600733112
  6. Tang H., Zhang M., Zhang Y., Luo P., Ravelli D., Wu J. Direct Synthesis of Thioesters from Feedstock Chemicals and Elemental Sulfur // Journal of the American Chemical Society. 2023. V. 145. P. 5846. https://doi.org/10.1021/jacs.2c13157
  7. Chen S., Hu K., Feng W., Mao G., Li Y., Deng G. Direct Synthesis of Fused Thienoindoles via Base Promoted Double C–H Sulfuration with Elemental Sulfur // Advanced synthesis and catalysis. 2023. V. 365. P. 1846. https://doi.org/10.1002/adsc.202300443
  8. Pathania S., Narang R.K., Rawal R. Role of sulphur-heterocycles in medicinal chemistry: An update // European Journal of Medicinal Chemistry. 2019. V. 180. P. 486. https://doi.org/10.1016/j.ejmech.2019.07.043
  9. Houghton-Flory C., Saed M., Terentjev E. Vulcanization of polypropylene // Journal of Polymer Science. 2024. https://doi.org/10.17863/CAM.104917
  10. Jeanguenat A., Lamberth C. Sulfur-based functional groups in agrochemistry. // Pest Management Science. 2023. V. 79. P. 2647. https://doi.org/10.1002/ps.7553
  11. Griebel J.J., Glass R.S., Char K., Pyun J. Polymerizations with elemental sulfur: A novel route to high sulfur content polymers for sustainability, energy and defense // Progress in Polymer Science. 2016. V. 58. P. 90. https://doi.org/10.1016/j.progpolymci.2016.04.003
  12. Zhang Y., Glass R.S., Char K., Pyun J. Recent advances in the polymerization of elemental sulphur, inverse vulcanization and methods to obtain functional Chalcogenide Hybrid Inorganic/Organic Polymers (CHIPs) // Polymer Chemistry. 2019. V. 10. P. 4078. https://doi.org/10.1039/C9PY00636B
  13. Kleine T.S., Glass R.S., Lichtenberger D.L., Mackay M.E., Char K., Norwood R.A., Pyun J. 100th Anniversary of Macromolecular Science Viewpoint: High Refractive Index Polymers from Elemental Sulfur for Infrared Thermal Imaging and Optics // ACS Macro Letters. 2020. V. 9. № 2. P. 245. https://doi.org/10.1021/acsmacrolett.9b00948
  14. Ghumman A.S.M, Shamsuddin R., Sabir R., Waheed A., Ahmad M., Sami A., Almohamadi H. Synthesis and performance evaluation of slow-release fertilizers produced from inverse vulcanized copolymers obtained from industrial waste // RSC Advances. 2023. V. 13. P. 7867. https://doi.org/10.1039/D3RA00256J
  15. Smith A., Tennyson A., Smith R. Sulfur-Containing Polymers Prepared from Fatty Acid-Derived Monomers: Application of Atom-Economical Thiol-ene/Thiol-yne Click Reactions and Inverse Vulcanization Strategies // Sustainable Chemistry. 2020. V. 1. P. 209. https://doi.org/10.3390/suschem1030015
  16. Dodd L.J., Omar O., Wu X., Hassel T. Investigating the Role and Scope of Catalysts in Inverse Vulcanization // ACS Catalysis. 2021. V. 11. P. 4441. https://doi.org/10.1021/acscatal.0c05010
  17. Onose Y., Ito Y., Kuwabara J., Kanbara T. Tracking side reactions of the inverse vulcanization process and developing monomer selection guidelines // Polymer Chemistry. 2022. V. 13. P. 5486. https://doi.org/10.1039/D2PY00774F
  18. Boyd D. Sulfur and Its Role In Modern Materials Science // Angewandte Chemie. 2016. V. 55. P. 15486. https://doi.org/10.1002/anie.201604615
  19. Ghumman A.S.M., Shamsuddin R., Abbasi A., Ahmad M., Yoshida Y., Sami A., Almohamadi H. The predictive machine learning model of a hydrated inverse vulcanized copolymer for effective mercury sequestration from wastewater // Science of The Total Environment. 2024. V. 908. P. 168034. https://doi.org/10.1016/j.scitotenv.2023.168034
  20. Abdullah G. Performance of Enhanced Problematic Soils in Roads Pavement Structure: Numerical Simulation and Laboratory Study. // Sustainability. 2023. Vol. 15. P. 2595. https://doi.org/10.3390/su15032595
  21. Fediuk R., Mugahed Amran Y.H., Mosaberpanah M.A., Danish A., El-Zeadani M., Klyuev S., Vatin N. A Critical Review on the Properties and Applications of Sulfur-Based Concrete. // Materials. 2020. V. 13. P. 4712. https://doi.org/10.3390/ma13214712
  22. Mloston G., Wreczycki J., Robak A., Urbaniak K., Bielinski D.M., Palusiak M., Sutula S., Wozniak K., Heimgartner H. Expedient sulfurization with elemental sulfur and an unexpected conversion of 2,3-diarylcyclopropenethiones using tetrabutylammonium fluoride (TBAF) as a source of the fluoride anion // Journal of Fluorine Chemistry. 2023. Vol. 270. P. 110170. https://doi.org/10.1016/j.jflchem.2023.110170
  23. Tarasova N., Krivoborodov E., Egorova A., Zanin A., Glukhov L., Toropygin I., Mezhuev Ya. Reaction of 1,3-dimethylazolium dimethylphosphate with elemental sulfur // Pure and Applied Chemistry. 2020. V. 92. P. 1297. https://doi.org/10.1515/pac-2019-1211
  24. Tarasova N., Krivoborodov E., Zanin A., Mezhuev Y. Ionic liquids: green solvents and reactive compounds? Reaction of tri-n-butylmethylphosphonium dimethylphosphate with elemental sulfur // Pure and Applied Chemistry. 2021. V. 93. P. 29. https://doi.org/10.1515/pac-2019-0804
  25. Tarasova N.P., Mezhuev Y.O., Zanin A.A., Krivoborodov E.G. Interaction of Ionic Liquids with Sulfur // Doklady Chemistry. 2019. V. 484. P. 8. https://doi.org/10.1134/S0012500819010051
  26. Tarasova N., Zanin A., Krivoborodov E., Toropygin I., Pascal E., Mezhuev Ya. The New Approach to the Preparation of Polyacrylamide-Based Hydrogels: Initiation of Polymerization of Acrylamide with 1,3-Dimethylimidazolium (Phosphonooxy-)Oligosulphanide under Drying Aqueous Solutions // Polymers. 2021. V. 13. P. 1806. https://doi.org/10.3390/polym1311806
  27. Tarasova N., Krivoborodov E., Zanin A., Toropygin I., Pascal E., Dyatlov V., Mezhuev Ya. Anionic Polymerization of Ethyl 2-Cyanoacrylate Initiated by 1,3-Dimethylimidazolium (phosphonooxy- )oligosulfanide // Macromolecules Research. 2021. V. 29. P. 847. https://doi.org/10.1007/s13233-021-9104-6
  28. Tarasova N., Zanin A., Krivoborodov E., Motyakin M., Levina I., Dyatlov V., Toropygin I., Dyakonov V., Mezhuev Y. The product of interaction of elemental sulfur and dimethylphosphate 1,3-dimethylimidazolium is a new green initiator of formaldehyde polymerization // Green Chem. Lett. Rev. 2021. V. 14. P. https://doi.org/10.1080/17518253.2021.1926550
  29. Tarasova N., Krivoborodov E., Zanin A., Pascal E., Toropygin I., Artyukhov A., Muradyan S., Mezhuev Y. Formation of Hydrogels Based on a Copolymer of N-Vinyl-2-pyrrolidone and Glycidyl Methacrylate in the Presence of the Reaction Product of 1,3-Dimethylimidazolium Dimethylphosphate and Elemental Sulfur // Gels. 2022. V. 8. P. 136. https://doi.org/10.3390/gels8020136
  30. Tarasova N., Krivoborodov E., Mezhuev Y. Current Trends in the Synthesis of Inorganic and Organoelement Phosphorus- and Sulfur-Containing Polymers. A Review // Doklady Chemistry. 2023. V. 512. P. 217. https://doi.org/10.1134/S0012500823600670
  31. Tarasova N., Krivoborodov E., Mezhuev Y. Nucleophilic activation of the sulfur S8 cyclic form as a green chemistry tool // Russian Chemical Bulletin. 2022. V. 72. P. 415. https://doi.org/10.1007/s11172-023-3809-9 https://nopr.niscpr.res.in/bitstream/123456789/41494/1/IJCA%2035A%2811%29%20974-978.pdf
  32. Doktorov A.B., Fedorenko S.G. The Influence of the Cage Effect on the Mechanism of Multistage Chemical Reactions in Solutions. In: Gupta Bhowon, M., Jhaumeer-Laulloo, S., Li Kam Wah, H., Ramasami, P. (eds) // Chemistry for Sustainable Development. 2012. Springer. Dordrecht. P. 11. https://doi.org/10.1007/978-90-481-8650-1_2
  33. Boros E., Earle M.J., Gilea M.A., Metlen A., Mudring A., Rieger F., Allan Robertson A.J., Seddon K., Tomaszowska A.A., Trusov L., Vylea J.S. On the dissolution of non-metallic solid elements (sulfur, selenium, tellurium and phosphorus) in ionic liquids // Chemical Communications. 2010. V. 46. P. 716. https://doi.org/10.1039/B910469K
  34. Zhang T., Schwedtmann K., Weigand J.J., Doert T., Ruck M. Dissolution behaviour and activation of selenium in phosphonium based ionic liquids // Chemical Communications. 2017. V. 53. P. 7588. https://doi.org/10.1039/C7CC03564K
  35. Zhang T., Schwedtmann K., Weigand J.J., Doert T., Ruck M. Understanding the Chemical Reactivity of Phosphonium-Based Ionic Liquids with Tellurium // Chemistry-A European Journal. 2018. V. 24. P. 9325. https://doi.org/10.1002/chem.201800320
  36. Pietsch T., Blasius J., Richter J., Grasser M.A., Hollóczki O., Wollmann P., Weidinger I.M., Ruck M., Brunner E. Processing Gray Selenium in Phosphonium-Based Ionic Liquids // Inorganic Chemistry. 2023. V. 62. P. 1667. https://doi.org/10.1021/acs.inorgchem.2c04094

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).