Studying Micromixing and Energy Dissipation in a Microreactor with Coaxial Chambers and Counter-Current Swirling Flows

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The specific energy dissipation rate and the micromixing quality (using the iodide-iodate technique) in a microreactor with coaxial chambers and counter-current intensively swirling flows (MRISF-CC-2) with various flow feed methods in a wide range of flow rates are studied. The dependence of the specific energy dissipation rate on the costs is found, as well as the dependence of the micromixing quality (the so-called segregation index) on the specific energy dissipation rate for three methods of feeding solutions to the device. The highest values of the specific energy dissipation rate are observed when feeding to the tangential nozzle of the inner chamber and the axial nozzle, values comparable to them are observed when feeding to the tangential nozzle of the outer chamber and the axial nozzle, and slightly lower values are observed when feeding to the tangential nozzles of the outer and inner chambers. A comparison of the segregation index with three other types of microreactors showed that, in general, all three methods of feeding into MRISF-CC-2 provide significantly higher micromixing quality. The micromixing indicators were slightly better in the MRISF-CC-2 microreactor as compared to the MRISF-CC-1 (with opposing chambers and counter-current intensively swirling flows). The presence of three high-intensity mixing zones and two intensive mixing zones in the microreactors with counter-current intensively swirling flows in MRISF-CC-1 and MRISF-CC-2 opens up wide possibilities for using these devices for multi-stage synthesis of nanoscale and submicron particles of inorganic materials, including composite materials.

About the authors

R. Sh. Abiev

St. Petersburg State Institute of Technology (Technical University)

Email: rufat.abiev@gmail.com
St. Petersburg, Russian Federation

A. K. Kudryashova

St. Petersburg State Institute of Technology (Technical University)

St. Petersburg, Russian Federation

References

  1. Hessel V., Löwe H., Müller A., Kolb G. Chemical Micro Process Engineering. Processing and Plants. Wiley-VCH Verlag: Weinheim, 2005.
  2. Fukano T., Kariyasaki A., Ide H. Fundamental data of the gas liquid two phase flow//Proceedings of ICMM2005 3rd International Conference on Microchannels and Minichannels, June 13–15, 2005, Toronto, Ontario, Canada.
  3. Dautzenberg F. M., Mukherjee M. Process intensification using multifunctional reactors // Chem. Eng. Sci. 2001. V. 56. P. 251.
  4. Taha T., Cui Z. F. Hydrodynamics of slug flow inside capillaries // Chem. Eng. Sci. 2004. V. 59. P. 1181.
  5. Hessel V. Mikroverfahrenstechnik fuer die chemische Produktion: Reaktorkonzepte, Anwendungen, Scale-up, Kostenanalyse // DECHEMA-Regional-Kolloquium “Neue Entwicklungen in der Mikroreaktionstechnik und Mikrotechnik”. Max-Planck-Institut fuer Dynamik komplexer Technischer Systeme. Magdeburg, 06.12.2006. https://www.maximizemarketresearch.com/market-report/microfluidics-market/164690/
  6. Marre S., Jensen K.F. Synthesis of micro and nanostructures in microfluidic systems // Chem. Soc. Rev. 2010. № 39. 1183; https://doi.org/10.1039/b821324k
  7. Kawase M., Suzuki T., Miura K. Growth mechanism of lanthanum phosphate particles by continuous precipitation // Chem. Eng. Sci. 2007. V. 62. P. 4875. https://doi.org/10.1016/j.ces.2007.02.032
  8. Marchisio D.L., Barresi A.A., Garbero M. Nucleation, growth, and agglomeration in barium sulfate turbulent precipitation // AIChE J. 2002. V. 48. No 9. P. 2039. https://doi.org/10.1002/aic.690480917
  9. Marchisio D.L., Rivautella L., Barresi A.A. Design and scale-up of chemical reactors for nanoparticle precipitation // AIChE J. 2006. V. 52. P. 1877. https://doi.org/10.1002/aic.10786
  10. Patil S., Kate P.R., Deshpande J.B., Kulkarni A.A. Quantitative understanding of nucleation and growth kinetics of silver nanowires // Chem. Eng. J. 2021. V. 414. I. 128711, https://doi.org/10.1016/j.cej.2021.128711
  11. Abiev R.S., Almjasheva O.V., Popkov V.I., Proskurina O.V. Microreactor synthesis of nanosized particles: The role of micromixing, aggregation, and separation processes in heterogeneous nucleation // Chem. Eng. Res. & Des. 2022. V. 178. P. 73; https://doi.org/10.1016/j.cherd.2021.12.003
  12. Bałdyga J., Bourne J.R. Simplification of micro-mixing calculations: I. Derivation and application of a new model // Chem. Eng. J. 1989. V. 42. P. 83.
  13. Bałdyga J., Bourne J.R. Turbulent Mixing and Chemical Reactions. Wiley, Chichester, 1999.
  14. Abiev R.Sh., Makusheva I.V. Energy Dissipation Rate and Micromixing in a Two-Step Micro-Reactor with Intensively Swirled Flows // Micromachines 2022. V. 13. Iss. 11. 1859. https://doi.org/10.3390/mi13111859
  15. Abiev R.S., Potekhin D.A. Studying the Quality of Micromixing in a Single-Stage Microreactor with Intensively Swirled Flows // Theor. Found. Chem. Eng 2023. V. 57. № 6. P. 1313. https://doi.org/10.1134/S0040579523060015
  16. Abiev R.Sh., Makusheva I.V., Mironova A.I. Comparison of hydrodynamics and micromixing quality in a two-stage microreactor with intensely swirled flows and in a T-mixer// Chem. Eng. & Proc.: Proc. Intens. 2024. CEP 109829 https://doi.org/10.1016/j.cep.2024.109829
  17. Абиев Р.Ш., Кудряшова А.К. Исследование микросмешения в микрореакторе с встречными интенсивно закрученными потоками // Теор. осн. хим. технол. 2024. Т. 58. № 2. С. 144. https://doi.org/10.31857/S0040357124020021
  18. Schwarzer H.C., Peukert W. Combined experimental/numerical study on the precipitation of nanoparticles // AIChE J. 2004; V. 50(12). P. 3234. https://doi.org/10.1002/aic.10277
  19. Zhang L., Hommes A., Schuring R., Yue J. An experimental study of pressure drop characteristics under single-phase flow through packed bed microreactors//AIChE J. 2025. V. 71(2). Iss. e18640. https://doi.org/10.1002/aic.18640
  20. Liu M.Y., Liu N., Tan J., Su Y.F., Deng W.S., Chen L., Xue R.X., Zhang Q.Y. Micromixer- assisted co-precipitation method for fast synthesis of layered Ni-rich materials for lithium-ion batteries // ChemElectroChem. 2019. Vol. 6(12). P. 3057. https://doi.org/10.1002/celc.201900511
  21. Yang J.W., Lu Y.C. Green synthesis of high-performance Li1.2Mn0.6Ni0.2O2 with the assist of a microreactor // Ind. Eng. Chem. Res. 2023. V. 62. P. 20259. https://doi.org/10.1021/acs.iecr.3c02558
  22. Quak D.H., Sarif M., Opitz P., Lange M., Jegel O., Pham D.H., Koziol M., Pradel L., Mondeshki M., Tahir M.N., Tremel W. Generalized synthesis of NaCrO2 particles for high-rate sodium ion batteries prepared by microfluidic synthesis in segmented flow // Dalton Trans. 2022. V. 51. P. 10466. https://doi.org/10.1039/D1DT04333A
  23. Xie T., Xu C. Numerical and experimental investigations of chaotic mixing behavior in an oscillating feedback micromixer// Chem. Eng. Sci. 2017. V. 171. P. 303. https://doi.org/10.1016/j.ces.2017.05.040.
  24. Wang J., Zhang Z., Xu X. Chaotic behavior and mixing enhancement in sudden convergent-divergent micromixers with herringbone grooves // Chem. Eng. Sci. 2025. V. 318. Iss. 122181. https://doi.org/10.1016/j.ces.2025.122181.
  25. Fodor P., Kaufman M. Time evolution of mixing in the staggered herringbone microchannel // Mod. Phys. Lett. B. 2011. V. 25(12-13). P. 1111. https://doi.org/10.1142/s0217984911026826.
  26. Falk L., Commenge J.-M. Performance comparison of micromixers. // Chem. Eng. Sci. 2010. 65. P. 405. https://doi.org/10.1016/j.ces.2009.05.045
  27. Guichardon P., Falk L. Characterisation of micromixing efficiency by the iodide-iodate reaction system. Part I: experimental procedure. // Chem. Eng. Sci. 2000. No. 5. P. 4233. https://doi.org/10.1016/S0009-2509(00)00068-3
  28. Commenge J.-M., Falk L. Villermaux-Dushman protocol for experimental characterization of micromixers. // Chem. Eng. and Proc. 2011. No. 50. P. 979. https://doi.org/10.1016/j.cep.2011.06.006
  29. Arian E., Pauer W. A comprehensive investigation of the incorporation model for micromixing time calculation. ChERD. 2021. V. 175. P. 296. https://doi.org/10.1016/j.cherd.2021.09.010.
  30. Asano S., Maki T., Mae K. Evaluation of mixing profiles for a new micromixer design strategy // AIChE J. 2016. 62. P. 1154. https://doi.org/10.1002/aic.15082.
  31. Микрореактор-смеситель с встречными закрученными потоками. Патент 2741735 РФ. 2021

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).