Studying Micromixing and Energy Dissipation in a Microreactor with Coaxial Chambers and Counter-Current Swirling Flows
- Authors: Abiev R.S.1, Kudryashova A.K.1
-
Affiliations:
- St. Petersburg State Institute of Technology (Technical University)
- Issue: Vol 59, No 6 (2025)
- Pages: 25—40
- Section: Articles
- Published: 15.12.2025
- URL: https://ogarev-online.ru/0040-3571/article/view/382022
- DOI: https://doi.org/10.7868/S3034605325060032
- ID: 382022
Cite item
Abstract
The specific energy dissipation rate and the micromixing quality (using the iodide-iodate technique) in a microreactor with coaxial chambers and counter-current intensively swirling flows (MRISF-CC-2) with various flow feed methods in a wide range of flow rates are studied. The dependence of the specific energy dissipation rate on the costs is found, as well as the dependence of the micromixing quality (the so-called segregation index) on the specific energy dissipation rate for three methods of feeding solutions to the device. The highest values of the specific energy dissipation rate are observed when feeding to the tangential nozzle of the inner chamber and the axial nozzle, values comparable to them are observed when feeding to the tangential nozzle of the outer chamber and the axial nozzle, and slightly lower values are observed when feeding to the tangential nozzles of the outer and inner chambers. A comparison of the segregation index with three other types of microreactors showed that, in general, all three methods of feeding into MRISF-CC-2 provide significantly higher micromixing quality. The micromixing indicators were slightly better in the MRISF-CC-2 microreactor as compared to the MRISF-CC-1 (with opposing chambers and counter-current intensively swirling flows). The presence of three high-intensity mixing zones and two intensive mixing zones in the microreactors with counter-current intensively swirling flows in MRISF-CC-1 and MRISF-CC-2 opens up wide possibilities for using these devices for multi-stage synthesis of nanoscale and submicron particles of inorganic materials, including composite materials.
About the authors
R. Sh. Abiev
St. Petersburg State Institute of Technology (Technical University)
Email: rufat.abiev@gmail.com
St. Petersburg, Russian Federation
A. K. Kudryashova
St. Petersburg State Institute of Technology (Technical University)St. Petersburg, Russian Federation
References
- Hessel V., Löwe H., Müller A., Kolb G. Chemical Micro Process Engineering. Processing and Plants. Wiley-VCH Verlag: Weinheim, 2005.
- Fukano T., Kariyasaki A., Ide H. Fundamental data of the gas liquid two phase flow//Proceedings of ICMM2005 3rd International Conference on Microchannels and Minichannels, June 13–15, 2005, Toronto, Ontario, Canada.
- Dautzenberg F. M., Mukherjee M. Process intensification using multifunctional reactors // Chem. Eng. Sci. 2001. V. 56. P. 251.
- Taha T., Cui Z. F. Hydrodynamics of slug flow inside capillaries // Chem. Eng. Sci. 2004. V. 59. P. 1181.
- Hessel V. Mikroverfahrenstechnik fuer die chemische Produktion: Reaktorkonzepte, Anwendungen, Scale-up, Kostenanalyse // DECHEMA-Regional-Kolloquium “Neue Entwicklungen in der Mikroreaktionstechnik und Mikrotechnik”. Max-Planck-Institut fuer Dynamik komplexer Technischer Systeme. Magdeburg, 06.12.2006. https://www.maximizemarketresearch.com/market-report/microfluidics-market/164690/
- Marre S., Jensen K.F. Synthesis of micro and nanostructures in microfluidic systems // Chem. Soc. Rev. 2010. № 39. 1183; https://doi.org/10.1039/b821324k
- Kawase M., Suzuki T., Miura K. Growth mechanism of lanthanum phosphate particles by continuous precipitation // Chem. Eng. Sci. 2007. V. 62. P. 4875. https://doi.org/10.1016/j.ces.2007.02.032
- Marchisio D.L., Barresi A.A., Garbero M. Nucleation, growth, and agglomeration in barium sulfate turbulent precipitation // AIChE J. 2002. V. 48. No 9. P. 2039. https://doi.org/10.1002/aic.690480917
- Marchisio D.L., Rivautella L., Barresi A.A. Design and scale-up of chemical reactors for nanoparticle precipitation // AIChE J. 2006. V. 52. P. 1877. https://doi.org/10.1002/aic.10786
- Patil S., Kate P.R., Deshpande J.B., Kulkarni A.A. Quantitative understanding of nucleation and growth kinetics of silver nanowires // Chem. Eng. J. 2021. V. 414. I. 128711, https://doi.org/10.1016/j.cej.2021.128711
- Abiev R.S., Almjasheva O.V., Popkov V.I., Proskurina O.V. Microreactor synthesis of nanosized particles: The role of micromixing, aggregation, and separation processes in heterogeneous nucleation // Chem. Eng. Res. & Des. 2022. V. 178. P. 73; https://doi.org/10.1016/j.cherd.2021.12.003
- Bałdyga J., Bourne J.R. Simplification of micro-mixing calculations: I. Derivation and application of a new model // Chem. Eng. J. 1989. V. 42. P. 83.
- Bałdyga J., Bourne J.R. Turbulent Mixing and Chemical Reactions. Wiley, Chichester, 1999.
- Abiev R.Sh., Makusheva I.V. Energy Dissipation Rate and Micromixing in a Two-Step Micro-Reactor with Intensively Swirled Flows // Micromachines 2022. V. 13. Iss. 11. 1859. https://doi.org/10.3390/mi13111859
- Abiev R.S., Potekhin D.A. Studying the Quality of Micromixing in a Single-Stage Microreactor with Intensively Swirled Flows // Theor. Found. Chem. Eng 2023. V. 57. № 6. P. 1313. https://doi.org/10.1134/S0040579523060015
- Abiev R.Sh., Makusheva I.V., Mironova A.I. Comparison of hydrodynamics and micromixing quality in a two-stage microreactor with intensely swirled flows and in a T-mixer// Chem. Eng. & Proc.: Proc. Intens. 2024. CEP 109829 https://doi.org/10.1016/j.cep.2024.109829
- Абиев Р.Ш., Кудряшова А.К. Исследование микросмешения в микрореакторе с встречными интенсивно закрученными потоками // Теор. осн. хим. технол. 2024. Т. 58. № 2. С. 144. https://doi.org/10.31857/S0040357124020021
- Schwarzer H.C., Peukert W. Combined experimental/numerical study on the precipitation of nanoparticles // AIChE J. 2004; V. 50(12). P. 3234. https://doi.org/10.1002/aic.10277
- Zhang L., Hommes A., Schuring R., Yue J. An experimental study of pressure drop characteristics under single-phase flow through packed bed microreactors//AIChE J. 2025. V. 71(2). Iss. e18640. https://doi.org/10.1002/aic.18640
- Liu M.Y., Liu N., Tan J., Su Y.F., Deng W.S., Chen L., Xue R.X., Zhang Q.Y. Micromixer- assisted co-precipitation method for fast synthesis of layered Ni-rich materials for lithium-ion batteries // ChemElectroChem. 2019. Vol. 6(12). P. 3057. https://doi.org/10.1002/celc.201900511
- Yang J.W., Lu Y.C. Green synthesis of high-performance Li1.2Mn0.6Ni0.2O2 with the assist of a microreactor // Ind. Eng. Chem. Res. 2023. V. 62. P. 20259. https://doi.org/10.1021/acs.iecr.3c02558
- Quak D.H., Sarif M., Opitz P., Lange M., Jegel O., Pham D.H., Koziol M., Pradel L., Mondeshki M., Tahir M.N., Tremel W. Generalized synthesis of NaCrO2 particles for high-rate sodium ion batteries prepared by microfluidic synthesis in segmented flow // Dalton Trans. 2022. V. 51. P. 10466. https://doi.org/10.1039/D1DT04333A
- Xie T., Xu C. Numerical and experimental investigations of chaotic mixing behavior in an oscillating feedback micromixer// Chem. Eng. Sci. 2017. V. 171. P. 303. https://doi.org/10.1016/j.ces.2017.05.040.
- Wang J., Zhang Z., Xu X. Chaotic behavior and mixing enhancement in sudden convergent-divergent micromixers with herringbone grooves // Chem. Eng. Sci. 2025. V. 318. Iss. 122181. https://doi.org/10.1016/j.ces.2025.122181.
- Fodor P., Kaufman M. Time evolution of mixing in the staggered herringbone microchannel // Mod. Phys. Lett. B. 2011. V. 25(12-13). P. 1111. https://doi.org/10.1142/s0217984911026826.
- Falk L., Commenge J.-M. Performance comparison of micromixers. // Chem. Eng. Sci. 2010. 65. P. 405. https://doi.org/10.1016/j.ces.2009.05.045
- Guichardon P., Falk L. Characterisation of micromixing efficiency by the iodide-iodate reaction system. Part I: experimental procedure. // Chem. Eng. Sci. 2000. No. 5. P. 4233. https://doi.org/10.1016/S0009-2509(00)00068-3
- Commenge J.-M., Falk L. Villermaux-Dushman protocol for experimental characterization of micromixers. // Chem. Eng. and Proc. 2011. No. 50. P. 979. https://doi.org/10.1016/j.cep.2011.06.006
- Arian E., Pauer W. A comprehensive investigation of the incorporation model for micromixing time calculation. ChERD. 2021. V. 175. P. 296. https://doi.org/10.1016/j.cherd.2021.09.010.
- Asano S., Maki T., Mae K. Evaluation of mixing profiles for a new micromixer design strategy // AIChE J. 2016. 62. P. 1154. https://doi.org/10.1002/aic.15082.
- Микрореактор-смеситель с встречными закрученными потоками. Патент 2741735 РФ. 2021
Supplementary files


