Исследование микронизации фавипиравира с помощью процесса быстрого расширения сверхкритического раствора

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Работа посвящена исследованию процесса быстрого расширения сверхкритических растворов для получения нано- и микрочастиц. В теоретическом анализе процесса представлены механизмы формирования частиц, базирующиеся на таких процессах, как пересыщение раствора, зародышеобразование, конденсация и коагуляция. Показано, что помимо давления и температуры на размер получаемых частиц оказывают влияние исходная концентрация микронизируемого вещества и конструкционные особенности установки. В экспериментальной части описана лабораторная установка для проведения процесса быстрого расширения сверхкритических растворов. Проведены эксперименты по микронизации фавипиравира при различных температурах и давлении. Средний размер исходных частиц составил 12.5 мкм, в результате микронизации размер полученных частиц находится в диапазоне от 0.45 до 1.07 мкм в зависимости от температуры и давления. Установлено, что одновременное повышение температуры и давления ведет к уменьшению размера частиц. По результатам рентгенофазового анализа было выявлено, что полученные частицы фавипиравира имеют аморфную структуру.

Full Text

Restricted Access

About the authors

П. Ю. Цыганков

Российский химико-технологический университет им. Д.И. Менделеева

Author for correspondence.
Email: chemcom@muctr.ru
Russian Federation, Москва

А. Ю. Кислинская

Российский химико-технологический университет им. Д.И. Менделеева

Email: chemcom@muctr.ru
Russian Federation, Москва

Е. А. Пашкин

Российский химико-технологический университет им. Д.И. Менделеева

Email: chemcom@muctr.ru
Russian Federation, Москва

Н. В. Меньшутина

Российский химико-технологический университет им. Д.И. Менделеева

Email: chemcom@muctr.ru
Russian Federation, Москва

References

  1. Воробей А.М., Паренаго О.О. Получение микро- и наночастиц с помощью сверхкритических флюидных технологий // Журнал физической химии. 2021. Т. 95. № 3. С. 300. [Vorobei A.M., Parenago O.O. Using supercritical fluid technologies to prepare micro-and nanoparticles // Russian Journal of Physical Chemistry A. 2021. V. 95. P. 407.]
  2. Gumerov F.M., Sabirzyanov A.N., Gumerova G.I. Sub- and supercritical fluids in polymer processing processes. Kazan: Feng, 2000.
  3. Esfandiari N. Production of micro and nano particles of pharmaceutical by supercritical carbon dioxide // J. Supercritical Fluids. 2015. V. 100. P. 129.
  4. Гильмутдинов И.М., Сабирзянов А.Н., Гумеров Ф.М. Влияние плотности растворителя и геометрии канала на морфологию и размер получаемых микрочастиц в процессе быстрого расширения сверхкритического раствора // Сверхкритические флюиды: теория и практика. 2008. Т. 3. № 1. С. 43.
  5. Tsai W.C., Rizvi S.S.H. Liposomal microencapsulation using the conventional methods and novel supercritical fluid processes // Trends in Food Science & Technology. 2016. V. 55. P. 61.
  6. Kumar R. et al. A critical review on the particle generation and other applications of rapid expansion of supercritical solution // Int. J. Pharm. 2021. V. 608. P. 121089.
  7. Kankala R.K. et al. Supercritical fluid (SCF)-assisted fabrication of carrier-free drugs: an eco-friendly welcome to active pharmaceutical ingredients (APIs) // Adv. Drug Del. Rev. 2021. V. 176. P. 113846.
  8. Chakravarty P. et al. Using supercritical fluid technology as a green alternative during the preparation of drug delivery systems // Pharmaceutics. 2019. V. 11. № 12. P. 629.
  9. Padrela L. et al. Supercritical carbon dioxide-based technologies for the production of drug nanoparticles/nanocrystals–a comprehensive review // Adv. Drug Del. Rev. 2018. V. 131. P. 22.
  10. Блынская Е.В. и др. Способы улучшения растворимости труднорастворимых фармацевтических субстанций // Фармация. 2017. Т. 66. № 6. С. 15.
  11. Abuzar S.M. et al. Enhancing the solubility and bioavailability of poorly water-soluble drugs using supercritical antisolvent (SAS) process // Int. J. Pharm. 2018. V. 538. № 1–2. P. 1.
  12. Гильмутдинов И.М. и др. Диспергирование полимерных материалов с использованием сверхкритических флюидных сред // Сверхкритические флюиды: теория и практика. 2009. Т. 4. № 3. С. 25. [Gil’mutdinov I.M. et al. The dispersion of polymeric materials with the use of supercritical fluids // Russian Journal of Physical Chemistry B. 2009. V. 3. P. 1145.]
  13. Türk M., Lietzow R. Formation and stabilization of submicron particles via rapid expansion processes // J. Supercritical Fluids. 2008. V. 45. № 3. P. 346.
  14. Razmimanesh F., Sodeifian G., Sajadian S.A. An investigation into Sunitinib malate nanoparticle production by US-RESOLV method: Effect of type of polymer on dissolution rate and particle size distribution // J. Supercritical Fluids. 2021. V. 170. P. 105163.
  15. Gomes M.T.M.S. et al. Trends on the rapid expansion of supercritical solutions process applied to food and non-food industries // Recent Patents on Food, Nutrition & Agriculture. 2019. V. 10. № 2. P. 82–92.
  16. Институт фармакопеи и стандартизации в сфере обращения лекарственных средств. Москва. URL: https://pharmacopoeia.regmed.ru/pharmacopoeia-projects/izdanie-15/2/2-1/favipiravir/?vers=3819&projects=Y&comments=y (дата обращения 01.03.2024).
  17. Chen B.Q. et al. Continuous nanonization of lonidamine by modified-rapid expansion of supercritical solution process // J. Supercritical Fluids. 2018. V. 133. P. 486.
  18. Türk M. Particle synthesis by rapid expansion of supercritical solutions (RESS): Current state, further perspectives and needs // J. Aerosol Sci. 2022. V. 161. P. 105950.
  19. Bagheri H. et al. Numerical solution of particle size distribution equation: Rapid expansion of supercritical solution (RESS) process // Particuology. 2021. V. 57. P. 201.
  20. Türk M. Influence of thermodynamic behaviour and solute properties on homogeneous nucleation in supercritical solutions // J. Supercritical Fluids. 2000. V. 18. № 3. P. 169.
  21. Ghoreishi S.M., Komeili S. Modeling of fluorinated tetraphenylporphyrin nanoparticles size design via rapid expansion of supercritical solution // J. Supercritical Fluids. 2009. V. 50. № 2. P. 183.
  22. Кузнецова И.В. и др. Гидродинамика и зародышеобразование в канале и свободной струе в процессе быстрого расширения сверхкритического раствора // Вестник Казанского технологического университета. 2012. Т. 15. № 1. С. 111.
  23. Гильмутдинов И.М. Термодинамика процессов дросселирования, десорбции и импрегнации сверхкритических растворов и расплавов с образованием высокодисперсных нано-, субмикро-, микроразмерных и структурированных материалов и композитов: специальность 01.04.14 “Теплофизика и теоретическая теплотехника”, 05.17.08 “Процессы и аппараты химических технологий”: дис. …д-ра. техн. наук / Гильмутдинов Ильфар Маликович; Казанский национальный исследовательский технологический университет. Казань, 2021. 390 с.
  24. Liu J., Amberg G., Do-Quang M. Numerical simulation of particle formation in the rapid expansion of supercritical solution process // J. Supercritical Fluids. 2014. V. 95. P. 572.
  25. Ghoreishi S.M., Komeili S. Modeling of fluorinated tetraphenylporphyrin nanoparticles size design via rapid expansion of supercritical solution // J. Supercritical Fluids. 2009. V. 50. № 2. P. 183.
  26. Bagheri H., Hashemipour H., Ghader S. Population balance modeling: application in nanoparticle formation through rapid expansion of supercritical solution // Computational Particle Mechanics. 2019. V. 6. P. 721.
  27. Rostamian H., Lotfollahi M.N. Production and characterization of ultrafine aspirin particles by rapid expansion of supercritical solution with solid co-solvent (RESS-SC): Expansion parameters effects // Particulate Sci. Technol. 2019.
  28. Sajadian S.A. et al. Solubility of favipiravir (as an anti-COVID-19) in supercritical carbon dioxide: An experimental analysis and thermodynamic modeling // J. Supercritical Fluids. 2022. V. 183. P. 105539.
  29. Oparin R.D., Vorobyev E.A., Kiselev M.G. A new method for measuring the solubility of slightly soluble substances in supercritical carbon dioxide // Russian Journal of Physical Chemistry B. 2016. V. 10. P. 1108.
  30. Bagheri H. et al. Supercritical carbon dioxide utilization in drug delivery: Experimental study and modeling of paracetamol solubility // Eur. J. Pharm. Sci. 2022. V. 177. P. 106273.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic diagram of the process of rapid expansion of supercritical solutions.

Download (115KB)
3. Fig. 2. External view of the expansion chamber.

Download (915KB)
4. Fig. 3. Expansion chamber with built-in heating system: 1 – cover with structure for placing cartridge heaters, thermocouple and nozzle; 2 – cartridge heaters; 3 – thermocouple; 4 – solid-state relay; 5 – thermostat.

Download (633KB)
5. Fig. 4. Schematic diagram of the RESS process setup: 1 – carbon dioxide cylinder; 2, 9 – filter; 3, 5, 7, 12 – ball valve; 4 – condenser; 6 – high-pressure pump; 8 – heating heat exchanger; 10 – needle valve; 11 – high-pressure apparatus with heating jacket; 13 – magnetic stirrer; 14 – expansion chamber; 15 – spray nozzle with heating; 16 – thermostat; 17 – solid-state relay; 18 – cartridge heaters; 19 – filter; 20 – programmable logic controller; 21 – personal computer.

Download (108KB)
6. Fig. 5. SEM images of favipiravir particles: a – before micronization; obtained during the RESS process at b – 328 K and 21 MPa; c – 338 K and 21 MPa.

Download (1MB)
7. Fig. 6. Particle size distribution graphs: (a) original favipiravir; (b) micronized at 318 K and 15; 18 MPa; (c) at 328 K and 15; 18 MPa; (d) – 338 K and 15; 18; 21 MPa.

Download (602KB)
8. Fig. 7. Spectra of the original (a) and RESS-micronized (b) favipiravir particles.

Download (178KB)

Copyright (c) 2024 Russian Academy of Sciences

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».