Impact of Hf0.5Zr0.5O2 ferroelectric film thickness on the wake-up effect and endurance of memory cells
- Authors: Savichev I.A1, Chouprik A.A1
-
Affiliations:
- Moscow Institute of Physics and Technology
- Issue: Vol 70, No 12 (2025)
- Pages: 1215–1224
- Section: НАНОЭЛЕКТРОНИКА
- URL: https://ogarev-online.ru/0033-8494/article/view/374160
- DOI: https://doi.org/10.7868/S3034590125120095
- ID: 374160
Cite item
Abstract
This work presents a comprehensive study of the correlation between the structural/ferroelectric properties of Hf0.5Zr0.5O2 (HZO) thin films – the functional layers for ferroelectric non-volatile memory – and their thickness in the 5–10 nm range. X-ray diffraction analysis revealed the predominant presence of the polar orthorhombic Pca 2 1 phase in all samples. The highest content of (002)-oriented domains, corresponding to the vertical orientation of the polar axis, was found in the 8 nm thick films. Electrical measurements demonstrated an inverse relationship between film thickness and the breakdown field, which varied from 6.5 MV/cm (5 nm) to 4.5 MV/cm (10 nm). A pronounced improvement in switching endurance was observed with decreasing thickness: films of 5–6 nm maintained stable ferroelectric characteristics up to 109–1010 switching cycles at an electric field of 3.0 MV/cm. Analysis of the I–V characteristic dynamics during wake-up with bipolar pulses showed that the parameter stabilization process is accompanied by a merging of the switching current peaks and an increase in the remanent polarization up to 30 μC/cm2. It was established that degradation in thin films begins significantly later (after >106 cycles) than in thick ones (104–105 cycles). This is presumably associated with the inhibitory effect of the amorphous phase on the kinetics of diffusion and drift of charged defects. The obtained results are valuable for the development of reliable ferroelectric memory devices, demonstrating an optimal combination of high remanent polarization and cycling stability in ultra-thin HZO films.
About the authors
I. A Savichev
Moscow Institute of Physics and TechnologyDolgoprudny, Russian Federation
A. A Chouprik
Moscow Institute of Physics and Technology
Email: chouprik.aa@mipt.ru
Dolgoprudny, Russian Federation
References
- Böscke T.S., Müller J., Bräuhaus D. et al. // Appl. Phys. Lett. 2011. V. 99. № 10. Article No. 102903.
- Müller J., Böscke T.S., Schröder U. et al. // Nano Lett. 2012. V. 12. № 8. P. 4318.
- Moll J.L., Tarui Y. // IEEE Trans. 1963. V. ED‑10. № 5. P. 338.
- Packan P., Akbar S., Armstrong M. et al. // 2009 IEEE Int. Electron Devices Meet. (IEDM). Baltimore. 07–09 Dec. N.Y.: IEEE, 2009. Paper No. 5424253.
- Tian X., Shibayama S., Nishimura T. et al. // Appl. Phys. Lett. 2018. V. 112. № 10. Article No. 102902.
- Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices/ Ed. by R. Waser. Weinheim: Wiley-VCH Verlag, 2012.
- Menou N., Muller Ch., Baturin I.S. et al. // J. Appl. Phys. 2005. V. 97. № 6. P. 064108.
- Morozov M.I., Damjanovic D. // J. Appl. Phys. 2008. V. 104. № 3. P. 034107.
- Tagantsev A.K., Stolichnov I., Colla E.L., Setter N. // J. Appl. Phys. 2001. V. 90. № . 3. P. 13872.
- Lou X.J. // J. Appl. Phys. 2009. V. 105. № 2.
- Pešić M., Fengler F.P.G., Larcher L. et al. // Advanced Functional Mater. 2016. V. 26. № 25. P. 4601.
- Chouprik A., Mikheev V., Korostylev E. et al. // Nanomaterials. 2023. V. 13. № 21. P. 2825.
- Sawabe Y., Saraya T., Hiramoto T. // Appl. Phys. Lett. 2022. V. 121. № 8. Article No. 082903.
- Savichev I.A., Margolin I.G., Romanov R.I., Chouprik A.A. // IEEE Trans. 2025. V. ED‑72. № 3. P. 1104.
- Tahara K., Toprasertpong K., Hikosaka Y. et al. // 2021 Symposium on VLSI Technology. Kyoto, Japan. 2021. C. 1.
- Okuno J., Kunihiro T., Konishi K. et al. //IEEE J. Electron Devices Soc. 2022. V. 10. P. 778.
- Okuno J., Kunihiro T., Yonai T. et al. // 2023 Int. Electron Devices Meet. (IEDM). San Francisco, 09–13 Dec. N.Y.: IEEE, 2023. Paper No. 10413661
- Schuegraf K.F., Hu C. // IEEE Trans. 1994. V. ED‑41. № 7. P. 1227.
- Florent K., Subirats A., Lavizzari S. et al. // 2018 IEEE Int. Reliability Physics Symp. (IRPS). Burlingame.11–15 March. N.Y.: IEEE, 2018. P. 6D.3–1.
- Kim H.K., Shi F.G. //IEEE Trans. 2002. V. DEI‑8. № 2. P. 248.
- Chouprik A., Spiridonov M., Zarubin S. et al. // ACS Appl. Electronic Mater. 2019. V. 1. № 3. P. 275.
Supplementary files


