Spectral characteristics of coupled magnonic structures under spin-wave damping compensation
- Authors: Temnaya O.S1, Nikitov S.A1
-
Affiliations:
- Kotelnikov Institute of Radioengineering and Electronics RAS
- Issue: Vol 70, No 12 (2025)
- Pages: 1200–1205
- Section: РАДИОФИЗИЧЕСКИЕ ЯВЛЕНИЯ В ТВЕРДОМ ТЕЛЕ И ПЛАЗМЕ
- URL: https://ogarev-online.ru/0033-8494/article/view/374157
- DOI: https://doi.org/10.7868/S3034590125120071
- ID: 374157
Cite item
Abstract
The magnetization dynamics in two dipolarly coupled ferromagnet–normal metal (FM–NM) structures is investigated under symmetric and asymmetric compensation of intrinsic spin-wave damping mediated by the spin Hall effect. Within the framework of a linear model of complex amplitudes, the spectral characteristics of the normal modes are analyzed, including their degeneracy at an exceptional point in the asymmetric case. It is demonstrated that asymmetric compensation leads to a transition from a two-frequency to a single-frequency regime at the exceptional point, accompanied by a narrowing of the spectral linewidth, whereas symmetric compensation preserves the two-frequency regime. The results are of relevance for the development of magnonic devices such as filters and sensors.
Keywords
About the authors
O. S Temnaya
Kotelnikov Institute of Radioengineering and Electronics RAS
Email: ostemnaya@gmail.com
Moscow, Russian Federation
S. A Nikitov
Kotelnikov Institute of Radioengineering and Electronics RASMoscow, Russian Federation
References
- Никитов С.А., Калябин Д.В., Лисенков И.В. и др. // Успехи физ. наук. 2015. Т. 185. № 10. С. 1002.
- Chumak A.V., Kabos P., Wu M. et al. // IEEE Trans. Magn. 2022. V.MAG‑58. № 6. Article No. 0800172.
- Kalinikos B.A., Slavin A.N. // J. Phys. C: Sol. Stat. Phys. 1986. V. 19. № 35. P. 7013.
- Григорьева Н.Ю., Калиникос В.А. Теория спиновых волн в пленочных ферромагнитных многослойных структурах. СПб: Изд-во СПбГЭТУ «ЛЭТИ», 2008.
- Verba R., Tyberkevych V., Krivorotov I., Slavin A. // Phys. Rev. Appl. 2014. V.1. № 4. 044006.
- Suhl H. // J. Phys. Chem. Solids. 1957. V. 1. № 4. P. 209.
- Jungwirth T., Wunderlich J., Olejnik K. // Nature Mater. 2021. V. 11. P. 382.
- Slonczewski J.C. // J. Magn. Magn. Mater. 1996. V. 159. № 1–2. P. L1.
- Зябловский А.А., Виноградов А.П., Пухов А.А. и др. // Успехи физ. наук. 2014. Т. 184. № 11. С. 1177.
- Miri M.-A., Al`u A. // Science. 2019. V. 363. P. 6422.
- Shi Ch., Dubois M., Chen Y. et al. // Nature Commun. 2016. V. 7. Article No. 11110.
- Stehmann T., Heiss W.D., Scholtz F.G. // J. Phys. A: Math. General. 2004. V. 37. № 31. P. 7813.
- Wang X.-g., Guo G.-h., Berakdar J. // Nature. Commun. 2020. V.11. Article No. 5663.
- Temnaya O.S., Safin A.R., Kalyabin D.V., Nikitov S.A.// Phys. Rev. Appl. 2022. V. 18. № 1. Article No. 014003.
- Sadovnikov A.V., Zyablovsky A.A., Dorofeenko A.V. et al. // Phys. Rev. Appl. 2022. V. 18. № 2. Article No. 024073.
- Rezende S.M. Fundamentals of Magnonics. Cham: Springer Nature, 2020.
- Wang Z., Sun Y., Wu M. et al. // Phys. Rev. Lett. 2011. V. 107. № 14. P. 146602.
- Wang Q., Pirro P., Verba R. et al. // Science Advances. 2018. V. 4. № 1. Article No. e1701517.
Supplementary files


