Spectral characteristics of coupled magnonic structures under spin-wave damping compensation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The magnetization dynamics in two dipolarly coupled ferromagnet–normal metal (FM–NM) structures is investigated under symmetric and asymmetric compensation of intrinsic spin-wave damping mediated by the spin Hall effect. Within the framework of a linear model of complex amplitudes, the spectral characteristics of the normal modes are analyzed, including their degeneracy at an exceptional point in the asymmetric case. It is demonstrated that asymmetric compensation leads to a transition from a two-frequency to a single-frequency regime at the exceptional point, accompanied by a narrowing of the spectral linewidth, whereas symmetric compensation preserves the two-frequency regime. The results are of relevance for the development of magnonic devices such as filters and sensors.

About the authors

O. S Temnaya

Kotelnikov Institute of Radioengineering and Electronics RAS

Email: ostemnaya@gmail.com
Moscow, Russian Federation

S. A Nikitov

Kotelnikov Institute of Radioengineering and Electronics RAS

Moscow, Russian Federation

References

  1. Никитов С.А., Калябин Д.В., Лисенков И.В. и др. // Успехи физ. наук. 2015. Т. 185. № 10. С. 1002.
  2. Chumak A.V., Kabos P., Wu M. et al. // IEEE Trans. Magn. 2022. V.MAG‑58. № 6. Article No. 0800172.
  3. Kalinikos B.A., Slavin A.N. // J. Phys. C: Sol. Stat. Phys. 1986. V. 19. № 35. P. 7013.
  4. Григорьева Н.Ю., Калиникос В.А. Теория спиновых волн в пленочных ферромагнитных многослойных структурах. СПб: Изд-во СПбГЭТУ «ЛЭТИ», 2008.
  5. Verba R., Tyberkevych V., Krivorotov I., Slavin A. // Phys. Rev. Appl. 2014. V.1. № 4. 044006.
  6. Suhl H. // J. Phys. Chem. Solids. 1957. V. 1. № 4. P. 209.
  7. Jungwirth T., Wunderlich J., Olejnik K. // Nature Mater. 2021. V. 11. P. 382.
  8. Slonczewski J.C. // J. Magn. Magn. Mater. 1996. V. 159. № 1–2. P. L1.
  9. Зябловский А.А., Виноградов А.П., Пухов А.А. и др. // Успехи физ. наук. 2014. Т. 184. № 11. С. 1177.
  10. Miri M.-A., Al`u A. // Science. 2019. V. 363. P. 6422.
  11. Shi Ch., Dubois M., Chen Y. et al. // Nature Commun. 2016. V. 7. Article No. 11110.
  12. Stehmann T., Heiss W.D., Scholtz F.G. // J. Phys. A: Math. General. 2004. V. 37. № 31. P. 7813.
  13. Wang X.-g., Guo G.-h., Berakdar J. // Nature. Commun. 2020. V.11. Article No. 5663.
  14. Temnaya O.S., Safin A.R., Kalyabin D.V., Nikitov S.A.// Phys. Rev. Appl. 2022. V. 18. № 1. Article No. 014003.
  15. Sadovnikov A.V., Zyablovsky A.A., Dorofeenko A.V. et al. // Phys. Rev. Appl. 2022. V. 18. № 2. Article No. 024073.
  16. Rezende S.M. Fundamentals of Magnonics. Cham: Springer Nature, 2020.
  17. Wang Z., Sun Y., Wu M. et al. // Phys. Rev. Lett. 2011. V. 107. № 14. P. 146602.
  18. Wang Q., Pirro P., Verba R. et al. // Science Advances. 2018. V. 4. № 1. Article No. e1701517.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).