Interaction of the resonant modes in the canted antiferromagnet/ferromagnet heterostructure

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The interaction of the resonant modes in the exchange-coupled two-layer canted antiferromagnet/ferromagnet heterostructure has been theoretically investigated. Expressions describing the dependence of the resonant frequencies of magnetization oscillations on the external magnetic field have been obtained by the method of Hamiltonian formalism. The effect of the coupling strength between the ferro- and antiferromagnetic layers on the width of the anti-crossing gap between the resonant mode of ferromagnet and the soft mode of antiferromagnet and on the magnitude of the external magnetic field at which hybridization is observed has been investigated. It is shown that increase in the antiferromagnet/ferromagnet exchange coupling constant leads to increase in the width of the anti-crossing gap and the magnitude of the external magnetic field at which hybridization is observed.

About the authors

A. A Meshcheryakov

Kotelnikov Institute of Radio Engineering and Electronics RAS; Moscow Institute of Physics and Technology (National Research University)

Email: AL.Meshcheryakov@gmail.com
Moscow, Russian Federation; Dolgoprudny, Russian Federation

A. R Safin

Kotelnikov Institute of Radio Engineering and Electronics RAS; Moscow Institute of Physics and Technology (National Research University); National Research University “Moscow Power Engineering Institute”; HSE University

Moscow, Russian Federation; Dolgoprudny, Russian Federation; Moscow, Russian Federation; Moscow, Russian Federation

D. V Kalyabin

Kotelnikov Institute of Radio Engineering and Electronics RAS; Moscow Institute of Physics and Technology (National Research University); HSE University

Moscow, Russian Federation; Dolgoprudny, Russian Federation; Moscow, Russian Federation

S. A Nikitov

Kotelnikov Institute of Radio Engineering and Electronics RAS; Moscow Institute of Physics and Technology (National Research University); Saratov State University

Moscow, Russian Federation; Dolgoprudny, Russian Federation; Saratov, Russian Federation

References

  1. Kruglyak V.V., Demokritov S.O., Grundler D. // J. Phys. D: Appl. Phys. 2010. V. 43. № 26. P. 264001.
  2. Никитов С.А., Калябин Д.В., Лисенков И.В. и др. // Успехи физ. наук. 2015. Т. 185. № 10. С. 1099.
  3. Никитов С.А., Сафин А.Р., Калябин Д.В. и др. // Успехи физ. наук. 2020. Т. 190. № 10. С. 1009.
  4. Luo Y., Esseling M., Käufler A. et al. // Phys. Rev. B. 2005. V. 72. № 1. P. 014426.
  5. Park B.G., Wunderlich J, Martí X. et al. // Nature Mater. 2011. V. 10. № 7. P. 347.
  6. Cheng R., Xiao D., Brataas A. // Phys. Rev. Lett. 2016. V. 116. № 20. P. 207603.
  7. Son J.Y., Kim C.H., Cho J.H. et al. // ACS Nano. 2010. V. 4. № 6. P. 3288.
  8. Meiklejohn W.H., Bean C.P. // Phys. Rev. 1957. V. 105. № 3. P. 904.
  9. Meiklejohn W.H. // J. Appl. Phys. 1962. V 33. № 3. P. 1328.
  10. Морозов А.И., Сигов А.С. // ФТТ. 2002. Т. 44. № 11. С. 2004.
  11. Фролов Г.И., Яковчук В.Ю., Середкин В.А. и др. // ЖТФ. 2005. Т 75. № 12. С. 69.
  12. Chatterjee S., Giri S., De S.K., Majumdar S. // J. Phys.: Conf. Ser. 2010. V. 200. P. 032011.
  13. Peng S., Zhu D., Li W. et al. // Nature Electron. 2020. V. 3. P. 757.
  14. Shiota Y., Taniguchi T., Ishibashi M. et al. // Phys. Rev. Lett. 2020. V. 125. № 1. P. 017203.
  15. MacNeill D., Hou J.T., Klein D.R. et al. // Phys. Rev. Lett. 2019. V. 123. № 4. P. 047204.
  16. Johansen Ø., Brataas A. // Phys. Rev. Lett. 2018. V. 121. № 8. P. 087204.
  17. Al-Hamdo H., Wagner T., Lytvynenko Ya. et al. // Phys. Rev. Lett. 2023. V. 131. № 4. P. 046701.
  18. Dzyaloshinsky I. // J. Phys. Chem. Solids 1958. V. 4. № 4. P. 241.
  19. Moriya T. // Phys. Rev. Lett. 1960. V. 4. № 5. P. 228.
  20. Туров Е.А. Физические свойства магнитоупорядоченных кристаллов. Москва: Изд-во АН СССР, 1963.
  21. Zakharov V.E., L’vov V.S., Falkovich G. Kolmogorov Spectra of Turbulence I: Wave Turbulence. Berlin: Springer, 1992.
  22. Slavin A., Tiberkevich V. // IEEE Trans. 2008 V. MAG‑44. № 4. P. 1916.
  23. Krivosik P., Patton C.E. // Phys. Rev. B. 2010. V. 82. № 18. P. 184428.
  24. Rezende S.M. Fundamentals of Magnonics. Cham: Springer, 2020.
  25. Мещеряков А.А., Сафин А.Р., Калябин Д.В., Никитов С.А. // ФТТ. 2025. Т. 67. № 1. С. 72.
  26. Holstein T., Primakoff H. // Phys. Rev. 1940. V. 58. № 12. P. 1098.
  27. Bogoljubov N.N. // Il Nuovo Cimento. 1958. V. 7. № 6. P. 794.
  28. White R.M., Sparks M., Ortenburger I. // Phys. Rev. 1965. V. 139. № 2A. P A450.
  29. Рабинович М.И., Трубецков Д.И. Введение в теорию колебаний и волн. М.: НИЦ «Регулярная и хаотическая динамика», 2000.
  30. Ounadjela K., Lefakis H., Speriosu V.S. et al. // Le Journal de Physique Colloques. 1988. V. 49. № C8. P. C8–1709.
  31. Morrish A.H. Canted Antiferromagnetism: Hematite. Singapore: World Scientific, 1994.
  32. Boventer I., Simensen H.T., Anane A. et al. // Phys. Rev. Lett. 2021. V. 126. № 18. P. 187201.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).