About propagation of super-Gaussian electromagnetic pulse in a resonantly absorbing gas medium

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

Based on the direct calculation (without the introduction of simplifying assumptions and transformations) of the Fourier integral, an analysis was made of the nature and features of the deformation of a nanosecond radio pulse with a super-Gaussian envelope and an energy spectrum belonging to the frequency interval occupied by the spectral line in a resonantly absorbing gaseous medium. The pulse propagates along the nearground path, the resonant absorption is due to the strong spectral line of water vapor with a frequency of 988.2 GHz, and its interaction with the medium is described by the Drude-Lorentz model. It has been established that in the case of a super-Gaussian pulse one should expect a significant change in the nature of distortions in comparison with a Gaussian pulse. In particular, it is shown that, with increasing optical path depth, the super-Gaussian pulse gradually transforms to the form of a set of two subpulses separated along the time axis, while the separation of the Gaussian pulse does not occur, all other conditions being equal.

About the authors

G. M Strelkov

Fryazino Branch Kotelnikov Institute of Radioengineering and Electronics RAS

Email: strelkov@fpreras.su
Fryazino, Russian Federation

Yu. S Khudyshev

Fryazino Branch Kotelnikov Institute of Radioengineering and Electronics RAS

Fryazino, Russian Federation

References

  1. Виноградова М.Б., Руденко О.В., Сухоруков А.П. Теория волн. М.: Наука, 1979.
  2. Boyd R.W. // J. Mod. Phys. 2009. V. 56. № 18–19. P. 1908.
  3. Nanda L., Wanare H., Ramakrishna S.A. // Phys. Rev. A. 2009. V. 79. № 4. Article No. 041806.
  4. Pinhasi Y., Yahalom A., Pinhasi G.A. // J. Opt. Soc. Amer. B. 2009. V. 26. № 12. P. 2404.
  5. Akulshin A.M., McLean R.J. // J. Opt. 2010. V. 12. № 10. Article No. 104001.
  6. Macke B., Segard B. // Phys. Rev. A. 2018. V. 97. № 6. Article No. 063830.
  7. Ахманов С.А., Выслоух В.А., Чиркин А.С. Оптика фемтосекундных лазерных имульсов. М.: Наука, 1988. с. 27.
  8. Agrawal G.P. Nonlinear Fiber Optics. L.: Elsevier, 2019. p. 57.
  9. Mishra G., Holkundkar A.R., Gupta N.K. // Laser and Particle Beams. 2011. V. 29. № 3. P. 305.
  10. Malik H.K., Devi L. // Results in Phys. 2020. V. 17. Article No. 103070.
  11. Sohrabi S., Jelvani S., Samavati K., Matin L.F. // Optical and Quantum Electron. 2023. V. 55. № 11. Article No. 942.
  12. Стрелков Г.М., Худышев Ю.С. // РЭ. 2025. Т. 70. № 8. С. 719.
  13. Strelkov G.M., Khudyshev Y.S. // 2024 IEEE9th All-Russian Microwave Conf. (RMC). Moscow. 25–29 Nov. N.Y.: IEEE, 2024. P. 485.
  14. Харкевич А.А. Спектры и анализ. М.: Физматгиз, 1962.
  15. Памятных Е.А., Туров Е.А. Основы электродинамика материальных сред в переменных и неоднородных полях. М.: Наука, 2000.
  16. Жевакин С.А., Наумов А.П. // Изв. вузов. Радиофизика. 1963. Т. 6. № 4. С. 674.
  17. Strelkov G.M., Khudyshev Y.S. // 2024 IEEE9th All-Russian Microwave Conf. (RMC). Moscow. 25–29 Nov. N.Y.: IEEE, 2024. P. 481.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).