Design of a coplanar Ω-resonator for excitation of optically detected magnetic resonance

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

We present a miniature two-port resonator with an Ω-shaped coplanar coil designed to excite optically detected magnetic resonance at 2.87 GHz in a diamond sample hosting nitrogen-vacancy (NV-centers). The resonator architecture was chosen because its fabrication does not require patterning planar structures on the diamond. The dimensions were calculated, and electromagnetic simulations using the finite-element method were performed to obtain the S-parameters both without and with the diamond included. After fabrication, the S-parameters were measured with a vector network analyzer. For the resonator with the diamond mounted on it, at 2.87 GHz we obtained a minimum reflection coefficient |S11| ≈ −24.85 dB, a loaded quality factor QH ≈ 44.2, and a −3 dB bandwidth of about 66 MHz.

About the authors

V. S Guseva

Kotelnikov Institute of Radio-Engineering and Electronics, Russian Academy of Sciences; Moscow Power Engineering Institute (National Research University)

Email: guseva_vs@cplire.ru
Moscow, Russian Federation; Moscow, Russian Federation

S. A Chechenya

Kotelnikov Institute of Radio-Engineering and Electronics, Russian Academy of Sciences; Moscow Power Engineering Institute (National Research University)

Moscow, Russian Federation; Moscow, Russian Federation

A. R Safin

Kotelnikov Institute of Radio-Engineering and Electronics, Russian Academy of Sciences; Moscow Power Engineering Institute (National Research University)

Moscow, Russian Federation; Moscow, Russian Federation

References

  1. Barry J.F., Schloss J.M., Bauch E. et al. // Rev. Mod. Phys. 2020. V. 92. № 1. Article No. 015004. doi: 10.1103/RevModPhys.92.015004
  2. Rondin L., Tetienne J.-P., Hingant T. et al. // Rep. Progr. Phys. 2014. V. 77. № 5. Article No. 056503. doi: 10.1088/0034-4885/77/5/056503
  3. Xu Y., Hou J., Wang Z. et al. // Photonics Research. 2023. V. 11, № 3. P. 393. doi: 10.1364/PRJ.11.000393
  4. Segawa T.F. и др. // Progr. Nuclear Magn. Resonance Spectroscopy. 2023. V. 132–133. P. 1. doi: 10.1016/j.pnmrs.2022.11.002
  5. Babashah H., Losero E., Galland C. // Open Research Europe. 2024. V. 4. Article No. 44. doi: 10.12688/openreseurope.16875.1
  6. Savitsky A., Zhang J., Suter D. // Rev. Sci. Instrum. 2023. V. 94. № 2. Article No. 023101. doi: 10.1063/5.0125628.4
  7. Opaluch O.R., Celinski Z., Celinska D. et al. // Nanomaterials. 2021. V. 11. № 8. Article No. 2108. doi: 10.3390/nano11082108
  8. Jia W., Shi Z., Qin X. et al. // Rev. Sci. Instrum. 2018. V. 89. № 6. Article No. 064705. doi: 10.1063/1.5028335
  9. Eisenach E.R. Tunable and Broadband Loop-Gap Resonator for Nitrogen Vacancy Centers in Diamond. Degree of Master of Science in Electrical Engineering and Computer Science. Cambridge MA: MIT, 2018. 68 p. https://apps.dtic.mil/sti/trecms/pdf/AD1087907.pdf
  10. Kapitanova P., Soshenko V.V., Vorobyov V.V. et al. // Письма в ЖЭТФ. 2018. Т. 108. № 9. С. 625. doi: 10.1134/S0370274X1821004X
  11. Nishitani D., Shimizu K., Fujiwara M. // Materials Today Commun. 2022. V. 31. Article No. 103488. doi: 10.1016/j.mtcomm.2022.103488
  12. Barry J.F., Turner M.J., Schloss J.M. et al. // Phys. Rev. Appl. 2024. V. 22. № 4. Article No. 044069. doi: 10.1103/PhysRevApplied.22.044069
  13. Pozar D.M. Microwave Engineering. Hoboken: Wiley, 2012.
  14. Bray J.R., Roy L. // IEE Proc. H: Microwaves, Antennas and Propagation. 2004. V. 151. № 5. P. 345. doi: 10.1049/ip-map:20040521
  15. Gregory A.P. Q-factor Measurement by Using a Vector Network Analyser: NPL Report MAT 58. L.: Nat. Phys. Lab., 2021. 105 p. https://eprintspublications.npl.co.uk/9304/3/MAT58.pdf
  16. Kajfez D. // IEE Proc. H: Microwaves, Antennas and Propagation. 1995. V. 142. № 5. P. 369. doi: 10.1049/ip-map:19952142
  17. Sasaki K., Monnai Y., Saijo S. et al. // Rev. Sci. Instrum. 2016. V. 87. № 5. Article No. 053904. doi: 10.1063/1.4952418
  18. Zhang N., Zhang C., Xu L. et al. // Appl. Magn. Resonance. 2016. V. 47. № 6. P. 589. doi: 10.1007/s00723-016-0777-5
  19. Bayat K., Choy J., Farrokh Baroughi M. // Nano Lett. 2014. V. 14. № 3. P. 1208. doi: 10.1021/nl404072s
  20. Yang X., Sun H., Dong C. et al. // AIP Advances. 2019. V. 9. № 7. Article No. 075213. doi: 10.1063/1.5099651
  21. Yaroshenko V.V., Soshenko V.V., Vorobyov V.V. et al. // Rev. Sci. Instrum. 2020. V. 91. № 3. Article No. 035003. doi: 10.1063/1.5129863
  22. Yang Y., Wu Q., Wang Y. et al. // Optics Continuum. 2023. V. 2. № 6. P. 1426. doi: 10.1364/OPTCON.488262
  23. Eisenach E. R., Barry J. F., Rojas R. et al. // Rev. Sci. Instrum. 2018. V. 89. № 9. Article No. 094705. doi: 10.1063/1.5037465
  24. Ball J., Yamashiro Y., Sumiya H. et al. //Appl. Phys. Lett. 2018. V. 112. № 20. Article No. 204102. doi: 10.1063/1.5025744
  25. Eisenach E.R., Barry J.F., O’Keeffe M.F. et al. // Nature Commun. 2021. V. 12. Article No. 1357. doi: 10.1038/s41467-021-21256-7
  26. Kubo Y., Ong F.R., Bertet P. et al. // Phys. Rev. Lett. 2010. V. 105. № 14. Article No. 140502. doi: 10.1103/PhysRevLett.105.140502
  27. Amsüss R., Koller C., Nöbauer T., Putz S. et al. // Phys. Rev. Lett. 2011. V. 107. № 6. Article No. 060502. doi: 10.1103/PhysRevLett.107.060502
  28. Ebel J., Joas T., Schalk M. et al. // Quantum Sci. Technol. 2021. V.6. № 3. Article No. 03LT01. doi: 10.1088/2058–9565/abfaaf
  29. Wadell B.C. Transmission Line Design Handbook. Norwood: Artech House, 1991.
  30. Breeze J.D., Salvadori E., Sathian J. et al. // Nature. 2018. V. 555. № 7697. P. 493. doi: 10.1038/nature25970
  31. Mariani G., Nomoto S., Kashiwaya S., Nomura S. // Sci. Reports. 2020. V. 10. Article No. 4813. doi: 10.1038/s41598-020-61669-w
  32. Simons R.N. Coplanar Waveguide Circuits, Components, and Systems. N.Y.: John Wiley & Sons, 2001.
  33. Gupta K.C., Garg R., Bahl I., Bhartia P. Microstrip Lines and Slotlines. Boston: Artech House, 1996.
  34. Marks R.B.; Williams D.F. // J. Research Nat. Inst. Standards and Technology. 1992. V. 97. № 5. P. 533. doi: 10.6028/jres.097.024
  35. Grover F.W. Inductance Calculations: Working Formulas and Tables. Mineola: Dover Publications, 2004.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).