Nonlinear magnetization dynamics in Bose-Einstein condensation of magnons

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

An equation for the dynamics of a Bose-Einstein condensate of magnons in a ferromagnetic film is presented, derived from quantum mechanical theory. The main interactions influencing the evolution of the condensed state are considered. An autonomous system of first-order differential equations describing the amplitude and phase of condensed magnons is obtained from the equation for their annihilation operator. The phase trajectories of such a system are investigated using the method of constructing phase portraits and determining the stability of stationary points.

About the authors

A. D. Gasanov

Kotelnikov Institute of Radioengineering and Electronics of RAS; Moscow Institute of Physics and Technology (National Research University)

Email: gasanov.ad@phystech.edu
Mokhovaya Str. 11, build. 7, Moscow, 125009 Russian Federation; Institutskiy lane, 9, Dolgoprudny, Moscow region, 141701 Russian Federation

A. A. Matveev

Kotelnikov Institute of Radioengineering and Electronics of RAS; Moscow Institute of Physics and Technology (National Research University)

Mokhovaya Str. 11, build. 7, Moscow, 125009 Russian Federation; Institutskiy lane, 9, Dolgoprudny, Moscow region, 141701 Russian Federation

A. R. Safin

Kotelnikov Institute of Radioengineering and Electronics of RAS; National Research University “Moscow Power Engineering Institute”

Mokhovaya Str. 11, build. 7, Moscow, 125009 Russian Federation; Krasnokazarmennaya Str., 14, Moscow, 111250 Russian Federation

S. A. Nikitov

Moscow Institute of Physics and Technology (National Research University); Saratov National Research State University named after N.G. Chernyshevsky

Institutskiy lane, 9, Dolgoprudny, Moscow region, 141701 Russian Federation; Astrakhanskaya Str., 83, Saratov, 410004 Russian Federation

References

  1. Arute F., Arya K., Ryan Babbushet R. et al. // Nature. 2019. V. 574. № 7779. P. 505.
  2. Ladd T.D., Jelezko F., Laflamme R. et al. // Nature. 2010. V. 464. № 7285. P. 45.
  3. Demokritov S.O., Demidov V.E., Dzyapko O. et al. // Nature. 2006. V. 443. № 7110. P. 430.
  4. Rezende S.M. Fundamentals of Magnonics. Cham: Springer Nature, 2020.
  5. Stancil D.D., Prabhakar A. Spin Waves: Theory and Applications. N.Y.: Springer, 2009.
  6. Holstein T., Primakoff H. // Phys. Rev. 1940. V. 58. № 12. P. 1098. http://dx.doi.org/10. 1103/PhysRev.58.1098
  7. Bogoljubov N.N. // Il Nuovo Cimento. 1958. V. 7. № 6. P. 794. http://dx.doi.org/10.1007/BF02745585
  8. Mohseni M., Qaiumzadeh A., Serga A.A. et al. // New J. Phys. 2020. V. 22. № 8. P. 083080.
  9. Balucani U., Barocchi F., Tognetti V., Brunner G. // Phys. Rev. B. 1972. V. 6. № 11. P. 4356.
  10. De Araujo C.B. // Phys. Rev. B. 1974. V. 10. № 9. P. 3961.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).