Cesium-137 extraction from nitric acid media with calix[4]arene-crown-6 ether solutions in bis(tetrafluoropropyl) carbonate

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription Access

Abstract

The physicochemical and extraction properties of calixarene crown ethers: 1,3-alt-bis(octyloxy)calix[4]arene-crown-6 (II) and its derivatives with o-phenylene (I), methylenepropoxy (IV) and methylene(2,2,3,3-tetrafluoropropoxy) (III) substituents in the crown ether ring, were studied. Solutions of compound II in bis(2,2,3,3-tetrafluoropropyl) carbonate (BK-1) effectively extract cesium from 3 mol/L nitric acid already at a concentration of 0.001 mol/L. The introduction of substituents into the crown ether ring significantly reduces the efficiency of cesium extraction, but increases the solubility of calixarene crown ethers in bis(2,2,3,3-tetrafluoropropyl) carbonate. The data on the solubility of calixarene crown ethers in water and 3 mol/L nitric acid, the distribution between the organic and aqueous phases, and the rate of interaction with nitric acid were obtained. Calixarene crown ether I with an o-phenylene substituent reacts with 3 mol/L nitric acid approximately 2 times faster than dibenzo-21-crown-7. The other calixarene crown ethers studied do not react with nitric acid under the similar conditions. Quantum chemical modeling, including optimization of the structure geometry and calculation of vibrational frequencies, was performed for the molecules of calixarene crown ethers, DB21C7 and their complexes with the cesium cation. The calculated ΔG0 values for the complexation of ligands with the cesium cation correlate well with the experimental lgDCs (except for compound III with a fluorinated substituent). Solutions of calixarene crown ethers in bis(2,2,3,3-tetrafluoropropyl) carbonate exhibit selectivity for cesium and do not extract 152Eu and 241Am from nitric acid media.

About the authors

T. S. Aleksandrov

Khlopin Radium Institute; St. Petersburg State University

Email: mkaravan@khlopin.ru
2-i Murinskii pr. 28, St. Petersburg, 194021 Russia; Universitetskaya nab. 7–9, St. Petersburg, 199034 Russia

E. S. Babitova

Khlopin Radium Institute; St. Petersburg State University

Email: mkaravan@khlopin.ru
2-i Murinskii pr. 28, St. Petersburg, 194021 Russia; Universitetskaya nab. 7–9, St. Petersburg, 199034 Russia

A. N. Blokhin

Institute of Macromolecular Compounds, Russian Academy of Sciences

Email: mkaravan@khlopin.ru
Bolshoi pr. V.O. 31, St. Petersburg, 199004 Russia

A. A. Brechalov

Khlopin Radium Institute; St. Petersburg State University

Email: mkaravan@khlopin.ru
2-i Murinskii pr. 28, St. Petersburg, 194021 Russia; Universitetskaya nab. 7–9, St. Petersburg, 199034 Russia

V. V. Eremin

St. Petersburg State University

Email: mkaravan@khlopin.ru
Universitetskaya nab. 7–9, St. Petersburg, 199034 Russia

Yu. E. Ermolenko

St. Petersburg State University

Email: mkaravan@khlopin.ru
Universitetskaya nab. 7–9, St. Petersburg, 199034 Russia

M. D. Karavan

Khlopin Radium Institute; St. Petersburg State University

Email: mkaravan@khlopin.ru
2-i Murinskii pr. 28, St. Petersburg, 194021 Russia; Universitetskaya nab. 7–9, St. Petersburg, 199034 Russia

E. V. Kenf

Khlopin Radium Institute

Email: mkaravan@khlopin.ru
2-i Murinskii pr. 28, St. Petersburg, 194021 Russia

T. V. Maltseva

Khlopin Radium Institute

Email: mkaravan@khlopin.ru
2-i Murinskii pr. 28, St. Petersburg, 194021 Russia

A. S. Ostras'

St. Petersburg State University

Email: mkaravan@khlopin.ru
Universitetskaya nab. 7–9, St. Petersburg, 199034 Russia

V. V. Timoshenko

St. Petersburg State University

Email: mkaravan@khlopin.ru
Universitetskaya nab. 7–9, St. Petersburg, 199034 Russia

L. I. Tkachenko

Khlopin Radium Institute

Email: mkaravan@khlopin.ru
2-i Murinskii pr. 28, St. Petersburg, 194021 Russia

I. V. Smirnov

Khlopin Radium Institute; St. Petersburg State University

Author for correspondence.
Email: mkaravan@khlopin.ru
2-i Murinskii pr. 28, St. Petersburg, 194021 Russia; Universitetskaya nab. 7–9, St. Petersburg, 199034 Russia

References

  1. Стратегия развития ядерной энергетики России. М.: Росатом, 2023. 64 с.
  2. Логунов М.В., Ворошилов Ю.А., Бабаин В.А., Скобцов А.С. // Радиохимия. 2020. Т. 62. № 6. С. 463.
  3. Grüner B., Rais J., Seluckỳ P., Lučaníková M. // Boron Science: New Technologies and Applications / Ed. N.S. Hosmane. CRC, 2016. P. 463.
  4. Ворошилов Ю.А., Логунов М.В., Смольянихин К.В., Яковлев Н.Г. // Вопр. радиац. безопасности. 2013. № 2. P. 23.
  5. Кощеева А.М., Родин А.В., Ананьев А.В. // Радиохимия. 2023. Т. 65. № 4. С. 303–309.
  6. Smirnov I.V., Karavan M.D., Kenf E.V., Tkachenko L.I., Timoshenko V.V., Brechalov A.A. et al. // Solvent Extr. Ion Exch. 2022. Vol. 40. N 7. P. 756.
  7. Mátel Ľ., Bilbao T. // J. Radioanal. Nucl. Chem. 1989. Vol. 137. N 3. P. 183.
  8. Ripon R.I., Begum Z.A., Rahman I.M.M. // Microchem. J. 2024. Vol. 199. Article 110161.
  9. Ungaro R., Casnati A., Ugozzoli F., Pochini A., Dozol J.-F., Hill C., Rouquette H. // Angew. Chem. Int. Ed. Engl. 1994. Vol. 33. P. 1506.
  10. Roach B.D., Neil W.J., Duncan N.C., Laetitia H. // Solvent Extr. Ion Exch. 2014. Vol. 33. N 2. P. 134.
  11. Simonnet M., Miyazaki Y., Suzuki S., Yaita V. // Solvent Extr. Ion Exch. 2019. Vol. 37. P. 81.
  12. Wang J., Zhuang S. // Nucl. Eng. Technol. 2020. Vol. 52. N 2. P. 328.
  13. Kumar V., Sharma J.N., Achuthan P.V., Hubli R.C. // J. Radioanal. Nucl. Chem. 2014. Vol. 299. P. 1547.
  14. Khan P.N., Pahan S., Sengupta A., Tessy V., Singhadeb A.K., Ali S.M. // J. Mol. Liq. 2024. Vol. 397. Article 124064.
  15. Jagasia P., Mohapatra P.K., Dhami P.S., Patil A.B., Adya V.C., Sengupta A. et al. // J. Radioanal. Nucl. Chem. 2014. Vol. 302. N 2. P. 1087.
  16. Wang J., Chen J., Shan J. // Solvent Extr. Ion Exch. 2015. Vol. 33. P. 249.
  17. Zhang A., Hu Q. // Sep. Sci. Technol. 2017. Vol. 52. N 10. P. 1670.
  18. Patra K., Sengupta A., Mishra R.K., Mittal V.K., Valsala T.P., Kaushik C.P. // J. Radioanal. Nucl. Chem. 2022. Vol. 331. N 3. P. 1473.
  19. Babain V., Alyapyshev M., Еkberg С., Todd T. // Solvent Extr. Ion Exch. 2023. Vol. 41. N 3. P. 253.
  20. Percec V., Bera T.K., De B.B., Sanai Y., Smith J., Holerca M.N., Barboiu B. // J. Org. Chem. 2001. Vol. 66. P. 2104.
  21. Adamo C., Barone V. // J. Chem. Phys. 1999. Vol. 110. N 13. P. 6158.
  22. Weigend F., Ahlrichs R. // Phys. Chem. Chem. Phys. 2005. Vol. 7. P. 3297.
  23. Leininger T., Nicklass A., Kuechle W., Stoll H., Dolg M., Bergner A. // Chem. Phys. Lett. 1996. Vol. 255. P. 274.
  24. Caldeweyher E., Bannwarth C., Grimme S. // J. Chem. Phys. 2017. Vol. 147. Article 034112.
  25. Barone V., Cossi M. // J. Phys. Chem. A. 1998. Vol. 102. N 11. P. 1995.
  26. Chemcraft–graphical software for visualization of quantum chemistry computations. Version 1.8, build 682. https://www.chemcraftprog.com
  27. Smirnov I.V., Stepanova E.S., Tyupina M.Y., Ivenskaya N.M., Zaripov S.R., Kleshnina S.R. et al. // Macroheterocycles. 2017. Vol. 10. N 2. P. 196.
  28. Sharma J.N., Kumar A., Kumar V., Pahan S., Janardanan C., Tessi V., Wattal P.K. // Sep. Purif. Technol. 2014. Vol. 135. P. 176.
  29. Jagasia P., Ansari S.A., Raut D.R., Dhami P.S., Gandhi P.M., Kumar A., Mohapatra P.K. // Sep. Purif. Technol. 2016. Vol. 170. P. 208.
  30. Raut D.R., Mohapatra P.K., Choudhary M.K., Nayak S.K. // J. Membr. Sci. 2013. Vol. 429. P. 197.
  31. Patra K., Sadhu B., Sengupta A., Patil C.B., Mishra R.K., Kaushik C.P. // RSC Adv. 2021. Vol. 11. P. 21323.
  32. Jagasia P., Mohapatra P.K., Dhami P.S., Gandhi P.M., Wattal P.K. // Sep. Sci. Technol. 2014. Vol. 49. P. 2151.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2025 Russian Academy of Sciences

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).