Пространственно-одномерные краевые задачи связанной термоупругости. Метод обобщенных функций

Обложка

Цитировать

Полный текст

Аннотация

Рассматриваются задачи определения термонапряженного состояния термоупругого стержня с использованием модели связанной термоупругости. В этом случае в уравнение теплопроводности входит дивергенция скорости движения материальных точек среды, а в уравнения упругости – градиент температуры. На основе метода обобщенных функций построены обобщенные решения нестационарных и стационарных прямых и полуобратных краевых задач при действии силовых и тепловых источников различного типа, в том числе описываемых сингулярными обобщенными функциями, при различных краевых условиях на концах стержня. Рассмотрены термоударные волны, которые возникают в таких конструкциях при действии ударных нагрузок и тепловых потоков, получены условия на их фронтах. Доказана единственность поставленных краевых задач, в том числе с учетом ударных волн. Даны регулярные интегральные представления обобщенных решений, которые дают аналитическое решение поставленных краевых задач.

Об авторах

Л. А. Алексеева

Институт математики и математического моделирования

Автор, ответственный за переписку.
Email: alexeeva@math.kz
Казахстан, Алма-Ата

М. М. Ахметжанова

Институт математики и математического моделирования

Автор, ответственный за переписку.
Email: mariella80@mail.ru
Казахстан, Алма-Ата

Список литературы

  1. Новацкий В. Теория упругости. М.: Мир, 1975. 872 с.
  2. Новацкий В. Динамические задачи термоупругости. М.: Мир, 1970. 256 с.
  3. Новацкий В. Вопросы термоупругости. М.: Изд-во АН СССР, 1962. 364 с.
  4. Encyclopedia of Thermal Stresses / Ed. by Hetnarski R.B. Netherlands: Springer, 2014. https://doi.org/10.1007/978-94-007-2739-7
  5. Awrejcewicz J., Krysko V.A., Krysko A.V. Thermo-Dynamics of Plates and Shells. Berlin: Springer, 2007. 468 c.
  6. Купрадзе В.Д., Гегелиа Т.Г., Башелешвили М.О., Бурчуладзе Т.В. Трехмерные задачи математической теории упругости и термоупругости. М.: Наука, 1976. 664 с.
  7. Suh I.J., Tasaka N. Boundary element analysis of dynamic coupled thermoelasticity problems // Comput. Mech. 1991. T. 8. № 1. C. 313–342.
  8. Алексеева Л.А., Жанбырбаев Н.Б., Дадаева А.Н. Метод граничных интегральных уравнений в краевых задачах несвязанной термоэластодинамики // ПММ. 1999. Т. 63. № 5. С. 853–859.
  9. Алексеева Л.А., Купесова Б.Н. Метод обобщенных функций в краевых задачах связанной термоэластодинамики // ПММ. 2001. Т. 65. № 2. С. 334–345.
  10. Dargush E., Banerdjee P.K. The development of a boundary element methods for time-dependent thermoelasticity // Solid&Struct. 1989. V. 9. № 5. P. 999–1021.
  11. Dargush G.E., Banerdjee P.K. Boundary element methods in three-dimensional thermoelasticity // Solid&Struct. 1990. V. 10. № 2. P. 199–216.
  12. Алексеева Л.А. Метод обобщенных функций в нестационарных краевых задачах для волнового уравнения // Матем. ж. Алматы. 2006. Т. 6. № 1. С. 16–32.
  13. Владимиров В.C. Обобщенные функции в математической физике. М.: Наука, 1978. 270 с.
  14. Алексеева Л.А., Дадаева А.Н., Айникеева Н.Ж. Фундаментальные и обобщенные решения уравнений нестационарной динамики термоупругих стержней // Вестн. ЕНУ им. Л.Н. Гумилева: Матем., компьют. науки, мех. 2018. № 2 (123). С. 56–65.
  15. Алексеева Л.А., Ахметжанова М.М. Фундаментальные и обобщенные решения уравнений динамики термоупругих стержней. 1. Стационарные колебания // Матем. ж. 2014. Т. 14. № 2. С. 5–20.
  16. Алексеева Л.А. Стационарные краевые задачи динамики термоупругих стержней // Изв. НАН РК. Сер. Физ.-мат. 2014. № 3. С. 144–152.
  17. Kudaykulov A., Zhumadillayeva A. Numerical simulation of temperature distribution field in beam bulk in the simultaneous presence of heat insulation, heat flux and heat exchange // Acta Phys. Polon. A. 2016. V. 130. № 1. P. 335–336.
  18. Kudaykulov A., Tashev A., Zhumadillayeva A., Askarova A. Investigation of the steady nonlinear thermomechanical state of a rod of limited length and constant cross-section in the presence of symmetrical local thermal insulation, lateral heat exchanges and end heat fluxes // J. Adv. Phys. 2018. № 7. P. 522–526.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Л.А. Алексеева, М.М. Ахметжанова, 2023

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).