Contour Method of Tomographic Scanning with Identification of Defects Using Computer Vision

Мұқаба

Дәйексөз келтіру

Толық мәтін

Аннотация

Studying large objects is one of the most common problems of X-ray tomographic scanning, the solution of which requires the use of more powerful radiation sources, complex expensive mechatronics, and large-sized detector devices, which undoubtedly leads to a multiple increase in the cost of the X-ray unit itself. This article presents one of the possible methods for solving this problem, the essence of which is to scan objects along their contour. This approach can greatly reduce the cost of components of the X-ray unit. At the same time, the approach has a significant limitation: the presence of a large number of artifacts that do not allow detecting defects with sufficient reliability. This problem is proposed to be solved using machine learning.

Авторлар туралы

A. Ozdiev

National Research Tomsk State University

Email: svi_tsu@mail.ru
634050, Tomsk, Russia

V. Syryamkin

National Research Tomsk State University

Хат алмасуға жауапты Автор.
Email: svi_tsu@mail.ru
634050, Tomsk, Russia

Әдебиет тізімі

  1. Hiller J., Maisl M., Reindl L.M. // Measurement Science and Technology. 2012. V. 23. P. 085404. https://doi.org/10.1088/0957-0233/23/8/085404
  2. Zhao G., Qin S. // Sensors (Switzerland). 2018. V. 18. https://doi.org/10.3390/s18082524
  3. Sperrin M., Winder J. Scienti c Basis of the Royal College of Radiologists Fellowship. IOP Publishing, 2014. P. 2−50.
  4. Zwanenburg E., Williams M., Warnett J. // Measurement Science and Technology. V. 33. № 1. https://doi.org/10.1088/1361-6501/ac354a
  5. De Chiffre L., Carmignato S., Kruth J.-P., Schmitt R., Weckenmann A. // CIRP Annals – Manufacturing Technology. 2014. V. 63. P. 655. https://doi.org/10.1016/j.cirp.2014.05.011
  6. Cervantes G.A. Technical Fundamentals of Radiology and CT. IOP Publishing, 2016. P. 11−15.
  7. Herman G.T. Chap. Computerized Tomography. UK, Basingstoke: Macmillan Press Ltd., 2002. P. 192.
  8. Ozdiev A., Afornu B., Sednev D. // Research in Nondestructive Evaluation. 2019. V. 30. Iss. 3. P. 179. https://doi.org/10.1080/09349847.2018.1498960
  9. Wenming Guo, Huifan Qu, Lihong Liang // 14th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD). Huangshan, China, July 28-30, 2018. IEEE. 2018. doi 20https://doi.org/10.1109/ICNC-FSKD45631.2018
  10. Ozdiev A. // Key Engineering Materials. 2017. V. 743. P. 445. doi: 10.4028/ href='www.scientific.net/KEM.743.445' target='_blank'>www.scientific.net/KEM.743.445
  11. Ozdiev A., Kryuchkov Y., Kroning H. // MATEC Web Conf. V International Forum for Young Scientists “Space Engineering”. 2017. V. 102. Article Number 01029. P. 4. https://doi.org/10.1051/matecconf/201710201029
  12. https://ieeexplore.ieee.org/abstract/document/7984661

© А.Х. Оздиев, В.И. Сырямкин, 2023

Согласие на обработку персональных данных

 

Используя сайт https://journals.rcsi.science, я (далее – «Пользователь» или «Субъект персональных данных») даю согласие на обработку персональных данных на этом сайте (текст Согласия) и на обработку персональных данных с помощью сервиса «Яндекс.Метрика» (текст Согласия).