Impact of war on soils (review)

Capa

Citar

Texto integral

Acesso aberto Acesso aberto
Acesso é fechado Acesso está concedido
Acesso é fechado Somente assinantes

Resumo

Since the birth of civilizations, human activity has led to such degradation processes as erosion, pollution, desertification and others. However, soil changes as a result of military operations, even in localized areas, can lead to the complete withdrawal of these lands from economic turnover. Despite the fact that the total area of the territory affected by military operations is only 0.024% (121 406 km2) of the total area of the Earth, the damage to the soil cover is catastrophic. The aim of the paper is to analyze the literature sources on the study of physical and chemical changes in soils as a result of military activities. The search covered the period from 1950 to 2024 for all known military conflicts of the world. After analyzing the works, the changes were categorized into physical, morphological and chemical. Physical manifested as soil compaction from tracked machinery. Changes in morphological properties are manifested in the form of removal of soil horizons as a result of construction of defensive structures, mixing of soils. The greatest damage occurred as a result of explosions of shells and bombs. In the first months of World War I alone, more than 20 million craters were formed throughout the theater of war. In localized battles, such as the Battle of Stalingrad, more than 40 thousand craters and craters were counted on an area of less than 500 km2. Description of the processes of mixing and movement of solid-phase material allowed to reveal a new form of pedoturbation – bomboturbation. As a result of explosions of shells and bombs, soils of craters have O-A-(B)-C profile. With the development of military science to physical and morphological disturbances were added chemical pollution of soils by fuel, heavy metals, as well as input of nitroaromatic explosives, organophosphorus nerve agents, radioactive elements, dioxins from herbicides. For decades, soils in war zones as well as military ranges have been heavily contaminated with toxic compounds, mainly explosives and munitions (and their residues) containing harmful substances including antimony (Sb), lead (Pb), uranium (U), 2, 4- dinitrotoluene (DNT), 2, 4, 6-trinitrotoluene (TNT). These compounds are resistant to biological degradation or recycling and become a source of pollution potentially hazardous to human health and the environment. The extent of chemical contamination of soils as a result of warfare is enormous. Thus, only as a result of the war in Vietnam 14% of the country’s territory was polluted with defoliants and herbicides. The accumulated experimental and theoretical knowledge on the impact of military actions will allow tracing the transformation of various soil properties.

Sobre autores

O. Gordienko

Federal Scientific Centre of Agroecology of the Russian Academy of Sciences; Volgograd State University

Autor responsável pela correspondência
Email: oleg.gordienko.95@bk.ru
Volgograd 400062 Russia; Volgograd, 400062 Russia

Bibliografia

  1. Аль Халили А.М. Классификация беллигеративных комплексов Северной части Западного берега р. Иордан // Вестник ВГУ. Сер. География. Геоэкология. 2002. № 1. С. 60–64.
  2. Балюк С.А., Медведєв В.В., Воротинцева Л.І., Шимель В.В. Сучасні проблеми деградації ґрунтів і заходи щодо досягнення нейтрального її рівня // Вісник аграрної науки. 2017. № 8. С. 5–11.
  3. Бигильдина Э.Р., Усманова А.Р., Сайфуллин И.Ю., Файрузов И.И. Беллигеративные ландшафты: история вопроса, особенности формирования, проблемы использования // Астрахан. вестн. экол. образования. 2021. № 6. С. 30–40. https://doi.org/10.36698/2304-5957-2021-6-30-40
  4. Вагапова А.Б. Формирование беллигеративных ландшафтов на примере Чеченской Республики // Экология и безопасность жизнедеятельности. Сб. ст. XVIII Междунар. науч.-пр. конф. 2018. С. 111–115.
  5. Гагарина Э.И., Шелемина Н., Абакумов Е.В. Онтогенез почв на земляных беллигеративных сооружениях Ленинградской области // Вестник СПб. ун-та. 2011. Сер. 3. Вып. 1. С. 100–107.
  6. Голеусов П.В., Малышев А.В. Воспроизводство профиля чернозема при различной степени нарушения военными действиями // Региональные геосистемы. 2022. Вып. 46. № 3. С. 463–472. https://doi.org/10.52575/2712-7443-2022-46-3-463-472
  7. Демкина Т.С., Борисов А.В., Демкин В.А. Микробиологические исследования подкурганных палеопочв пустынно-степной зоны Волго-Донского междуречья // Почвоведение. 2004. № 7. С. 853–859.
  8. Демкина Т.С., Борисов А.В., Хомутова Т.Э. Сравнительная характеристика современных и погребенных почвенных комплексов в пустынно-степной зоне Волго-Донского междуречья // Почвоведение. 2019. № 11. C. 1295–1306. https://doi.org/10.1134/S0032180X19110029
  9. Демкина Т.С., Хомутова Т.Э., Кузнецова Т.В., Контобойцева А.А., Борисов А.В. Характеристика микробных сообществ погребенных почв Царицынской оборонительной линии (1718–1720 гг.) // Почвоведение. 2016. № 1. С. 65–78. https://doi.org/10.7868/S0032180X15090026
  10. Дорфман С. Война и экология. 2000. www.uic.unn.ru/~teog/ecologia.htm (дата обращения: 25.11.2024)
  11. Дрозд Г.Я. Физическо-механическая деградация почв вследствие военных действий в зоне проведения специальной военной операции // Вести Автомобильно-дорожного института. 2023. № 4. С. 24–33.
  12. Дымов А.А., Дубровский Ю.А., Габов Д.Н. Пирогенные изменения подзолов иллювиально-железистых (средняя тайга, Республика Коми) // Почвоведение. 2014. № 2. С. 144–154. https://doi.org/10.7868/S0032180X14020051
  13. Земляницкий Л.Т. Почвенные образования на каналах у Петрова вала в Камышинском районе // Почвоведение. 1949. № 5. С. 285–296.
  14. Зонн С.В., Зонн И.С. Экологические последствия военных операций в Чечне // Энергия. 2002. № 6. C. 50–53.
  15. Исмаилова А.Е. Экологические проблемы Казахстана. Семипалатинский ядерный полигон // Управление техносферой. 2020. Т. 3. № 4. С. 437–446. https://doi.org/10.34828/UdSU.2020.79.60.010
  16. Калов Р.О., Вагапова А.Б. Беллигеративные комплексы как генетический тип техногенных ландшафтов // Проблемы региональной экологии. 2013. № 6. С. 137–139.
  17. Караваева Н.А., Таргульян В.О., Черкинский А.Е. и др. Элементарные почвообразовательные процессы: Опыт концептуального анализа, характеристика, систематика. М.: Наука, 1992. 186 с.
  18. Ким О.В. Война и социальная трансформация в Европе раннего нового времени // СибСкрипт. 2013. № 2. С. 70–75.
  19. Кин Н.О., Струков Р.О. Беллигеративные ландшафты как форма экологического риска // Вопросы степеведения. 2021. № 3. С. 4–18. https://doi.org/10.24412/2712-8628-2021-3-4-18
  20. Клепиков О.В. Экологические последствия вооруженных конфликтов (информационно-аналитический обзор) // Международный научно-исследовательский журнал. 2023. № 11. С. 1–6. https://doi.org/10.23670/IRJ.2023.137.77
  21. Контамин Ф. Война в Средние века. СПб.: Ювента, 2001. 409 с.
  22. Корниенко Т.В. Плодородный полумесяц // Общенациональный интерактивный энциклопедический портал “Знания”. 2022. № 8. https://doi.org/10.54972/00000004_2022_8_4
  23. Кочетова Ж.Ю. Экология почв военных полигонов. Воронеж: Издательско-полиграфический центр “Научная книга”, 2023. 184 с.
  24. Мильков Ф.Н., Бережной А.В., Михно В.Б. Терминологический словарь по физической географии. М.: Высшая школа, 1993. 288 с.
  25. Полынов Б.Б. Роль географии почв и учения о ландшафтах в тактике и оперативном искусстве. М.: Изд-во АН СССР, 1944. 32 с.
  26. Самусь Н.А., Игнатенко О.Н., Самусь А.Н. Сталинградская битва: военные воздействия на геосреду территории Волгограда // Грани познания. 2017. № 2. С. 7–10.
  27. Указания по военной токсикологии: инструктивно-методические документы. М.: ГВКГ им. Н.Н. Бурденко, 2000. 298 с.
  28. Языков П.А. Опыт теории военной географии, с приложением к избранию пунктов, для сооружения крепостей предназначаемых. Ч. 1: Изложение теории. СПб, 1838. 270 с.
  29. Abrams E.M., Freter A.C. The Emergence of the Moundbuilders: The Archaeology of Tribal Societies in Southeastern Ohio. Athens: Ohio University Press, 2005. 229 p.
  30. Ackermann O., Maeir A.M., Bruins H.J. Unique human-made catenary changes and their effect on soil and vegetation in the semi-arid Mediterranean zone: a case study on Sarcopoterium spinosum distribution near Tell es-Safi/Gath, Israel // Catena. 2004. V. 57. P. 309–330. https://doi.org/10.1016/j.catena.2003.11.002
  31. Akhmetova R., Atantayeva B., Abenova G., Karibaev M., Amrina M., Kurbanova N. The impact of nuclear testing on the environment: The case of the Semipalatinsk nuclear test site // BIO Web of Conf. 2024. V. 141. P. 04039. https://doi.org/10.1051/bioconf/202414104039
  32. Ali B.A., Jassim A.S. History of the impact of radiation on the environment: Hiroshima bomb // E3S Web of Conf. 2024. V. 583. P. 04015. https://doi.org/10.1051/e3sconf/202458304015
  33. Althoff P.S., Thien S.J. Impact of M1A1 main battle tank disturbance on soil quality, invertebrates, and vegetation characteristics // J. Terramechanics. 2005. V. 42. P. 159–176. https://doi.org/10.1016/j.jterra.2004.10.014
  34. Amundson R., Jenny H. The Place of Humans in the State Factor Theory of Ecosystems and Their Soils // Soil Sci. 1991. V. 151. P. 99–109. https://doi.org/10.1097/00010694-199101000-00012
  35. Baba A., Deniz O. Effect of warfare waste on soil: a case study of Gallipoli Peninsula (Turkey) // Int. J. Environ Poll. 2004. V. 22. P. 657–675. https://doi.org/10.1504/IJEP. 2004.006056
  36. Baumann M., Kuemmerle T. The impacts of warfare and armed conflict on land systems // J. Land Use Sci. 2016. V. 11. P. 672–688. https://doi.org/10.1080/1747423X.2016.1241317
  37. Bausinger T., Bonnaire É., Preuss J. Exposure assessment of a burning ground for chemical ammunition on the Great War battlefields of Verdun // Sci. Total Environ. 2007. V. 382. P. 259–271. https://doi.org/10.1016/j.scitotenv.2007.04.029
  38. Bidwell O.W., Hole F.D. Man as a factor of soil formation // Soil Sci. 1965. V. 99. P. 65–72. https://doi.org/10.1097/00010694-196501000-00011
  39. Biswas A., Tortajada-Quiroz C. Environmental impacts of the Rwandan refugees on Zaire // Ambio. 1996. V. 25. P. 403–408.
  40. Blanchet P. Forest Fires: The Story of a War. Montreal: Cantos International Publishing, 2003. 182 p.
  41. Breeze D., Dobson B. Hadrian’s Wall. Penguin, 2000. 358 p.
  42. Brenot J., Sauliere N., Lety C. Taborelli P., Zelie B., Blondeau R., Devos A., Desfosses Y. How much did the soldiers dig? A quantificaton of WW1 remains in Argonne, France // Geoarchaelogy. 2017. V. 32. P. 534–548. https://doi.org/10.1002/gea.21623
  43. Broomandi P., Guney M., Kim J. R., Karaca F. Soil Contamination in Areas Impacted by Military Activities: A Critical Review // Sustainability. 2020. V. 12. P. 9002. https://doi.org/10.3390/su12219002
  44. Cawthorne N. Vietnam: A War Lost and Won. London: Arcturus, 2003. 260 p.
  45. Certini G. Effects of fire on properties of forest soils: a review // Oecologia. 2005. V. 143. P. 1–10. https://doi.org/10.1007/s00442-004-1788-8
  46. Certini G., Scalenghe R., Woods W.I. The impact of warfare on the soil environment // Earth-Sci. Rev. 2013. V. 127. P. 1–15. https://doi.org/10.1016/j.earscirev.2013.08.009
  47. Chabay I., Frick M., Helgeson J. Land restoration – reclaiming landscapes for a sustainible future. Elsevier Academic Press, 2015. 598 p.
  48. De Groot G.J. The First World War. Houndmills: Palgrave, 2001. 225 p.
  49. Dermatas D., Menounou N., Dadachov M., Dutko P., Shen G., Xu X. Lead leachability in firing range soils // Environ. Eng. Sci. 2006. V. 23. P. 88–101. https://doi.org/10.1089/ees.2006.23.88
  50. Doerr S.H., Shakesby R.A., Blake W.H., Chafer C.J., Humphreys G.S., Wallbrink P.J. Effects of different wildfire severities on soil wettability and implications for hydrological response // J. Hydrology. 2006. V. 319. P. 295–311. https://doi.org/10.1016/j.jhydrol.2005.06.038
  51. Estrellan C.R., Iino F. Toxic emissions from open burning // Chemosphere. 2010. V. 80. P. 193–207. https://doi.org/10.1016/j.chemosphere.2010.03.057
  52. Francis R.A., Krishnamurthy K. Human conflict and ecosystem services: Finding the environmental price of warfare // Int. Affairs. 2014. V. 90. P. 853–869. https://doi.org/10.1111/1468-2346.12144
  53. Gillies J.A., Kuhns H., Engelbrecht J.P., Uppapalli S., Etyemezian V., Nikolich G. Particulate emissions from U.S. Department of defense artillery backblast testing // J. Air Waste Management Association. 2007. V. 57. P. 551–560. https://doi.org/10.3155/1047-3289.57.5.551
  54. Gorsevski V., Geores M., Kasischke E. Human dimensions of land use and land cover change related to civil unrest in the Imatong Mountains of South Sudan // Appl. Geography. 2013. V. 38. P. 64–75. https://doi.org/10.1016/j.apgeog.2012.11.019
  55. Grieve I.C. Human impacts on soil properties and their implications for the sensitivity of soil systems in Scotland // Catena. 2001. V. 42. P. 361–374. https://doi.org/10.1016/S0341-8162(00)00147-8
  56. Hagenlocher M., Lang S., Tiede D. Integrated assessment of the environmental impact of an IDP camp in Sudan based on very high resolution multi-temporal satellite imagery // Remote Sensing Environ. 2012. V. 126. P. 27–38. https://doi.org/10.1016/j.rse.2012.08.010.
  57. Hilpold P. The salting of carthage and the responsibility to rebuild // Humanitäres Völkerrecht. 2020. V. 3. P. 87–103. https://doi.org/10.35998/huv-2020-0006
  58. Horne A. The Price of Glory. London. 1993. 371 p.
  59. How much land does the military really own? Military Times. 2022, August 15 https://www.militarytimes.com/off-duty/military-culture/2022/08/15/how-much-land-does-the-military-really-own/
  60. Howard J. Anthropogenic Soils. Cham, Switzerland: Springer, 2017. 231 p.
  61. Hupy J.P., Koehler T. Modern warfare as a significant form of zoogeomorphic disturbance upon the landscape // Geomorphology. 2012. V. 157–158. P. 169–182. https://doi.org/10.1016/j.geomorph.2011.05.024
  62. Hupy J.P., Schaetzl R.J. Introducing “bombturbation”, a singular type of soil disturbance and mixing // Soil Sci. 2006. V. 171. P. 823–836. https://doi.org/10.1097/01.ss.0000228053.08087.19
  63. Igarashi Y., Aoyama M., Hirose K., Miyao T., Nemoto K., Tomita M., Fujikawa T. Resuspension: decadal monitoring time series of the anthropogenic radioactivity deposition in Japan // J. Radiation Res. 2003. V. 44. P. 319–328. https://doi.org/10.1269/jrr.44.319
  64. Koninck R.D. Deforestation in Viet Nam. Published by the International Development Research Centre, 1999. 101 p.
  65. Kuzyakov Y., Zamanian K. Reviews and syntheses: Agropedogenesis – humankind as the sixth soil-forming factor and attractors of agricultural soil degradation // Biogeosciences. 2019. V. 16. P. 4783–4803. https://doi.org/10.5194/bg-16-4783-2019
  66. Lin Z., Comet B., Qvarfort U., Herbert R. The chemical and mineralogical behavior of Pb in shooting range soils from Central Sweden // Environ Pollut. 1995. V. 89. P. 303–309. https://doi.org/10.1016/0269-7491(94)00068-o
  67. Lumsden M. Incendiary Weapons. Almqvist & Wiksell, 1975. 250 p.
  68. Mahmood H., Saha C., Paul N., Deb S., Abdullah S.M.R., Tanvir Md. S.S.I., et al. The soil quality of the world’s largest refugee campsites located in the Hill Forest of Bangladesh and the way forward to improve the soil quality // Environ. Chall. 2001. V. 3. P. 100048. https://doi.org/10.1016/j.envc.2021.100048
  69. Manzanilla L. Soil analyses to identify ancient human activities // Can. J. Soil Sci. 1996. V. 76. P. 107–108. https://doi.org/10.4141/cjss96-016
  70. Martinovic-Vitanovic V., Kalafatic V. Ecological impact on the danube after NATO air strikes // Handbook Environ. Chem. 2009. V. 3U. P. 253–282. https://doi.org/10.1007/978-3-540-87963-3_8
  71. Meaza H., Ghebreyohannes T., Tesfamariam Z., Gebresamuel G., Demissie B., Gebregziabher D., Nyssen J. The effects of armed conflict on natural resources and conservation measures in Tigray, Northern Ethiopia // Int. Soil Water Conserv. Res. 2024. P. 1–12. https://doi.org/10.1016/j.iswcr.2024.11.004
  72. Morrison W.A. The voice of defence: the history of the Conference of Defence Associations: the first fifty years 1932–1982. Ottawa: Department of National Defence, 1982. 262 p.
  73. Nigel J.R. Alan. Impact of afghan refugees on the vegetation resources of Pakistan’s HinduKush & Himalaya // Int. Mountain Society. 1987. V. 7. P. 200–204.
  74. Note N., Geyle W., Van den Berghe H., Saey T., Bourgois J., Van Eetvelde V., Van Meirvenne M., Stichelbaut B. An new evaluation approach of World War One´s devasted front zone: A shell hole density map on historical aerial photographs and validated by electromagnetic induction field measurements to link the metal shrapnel phenomen // Geoderma. 2018. V. 310. P. 257–269. https://doi.org/10.1016/j.geoderma.2017.09.029
  75. Ochiai E. Hiroshima to Fukushima: Biohazards of Radiation. Springer-Verlag Berlin Heidelberg, 2014. 226 p. https://doi.org/10.1007/978-3-642-38727-2
  76. Olson K.R., Cihacek L. Use of agent purple, agent orange and agent blue on royal thai air force base perimeters in Thailand during the Vietnam War // Open J. Soil Sci. 2023. V. 13. P. 243–271. https://doi.org/10.4236/ojss.2023.135010
  77. Olson K.R., Morton L. Long-term fate of agent orange and dioxin TCDD contaminated soils and sediments in Vietnam Hotspots // Open J. Soil Sci. 2019. V. 9. P. 1–34. https://doi.org/10.4236/ojss.2019.91001
  78. Omar S., Bhat N.R., Shahid S.A., Assem A. Land and vegetation degradation in war-affected areas in the Sabah Al-Ahmad Nature Reserve of Kuwait: A case study of Umm. Ar. Rimam // J. Arid Environ. 2005. V. 62. P. 475–490. https://doi.org/10.1016/j.jaridenv.2005.01.009
  79. Pereira P., Barcelo D., Panagos P. Soil and water threats in a changing environment // Environ. Res. 2020. V. 186. P. 109501. https://doi.org/10.1016/j.envres.2020.109501
  80. Perkins D.B., Haws N.W., Jawitz J.W., Das B.S., Rao P.S.C. Soil hydraulic properties as ecological indicators in forested watersheds impacted by mechanized warfare training // Ecol. Indic. 2007. V. 7. P. 589–597. https://doi.org/10.1016/j.ecolind.2006.07.003
  81. Pravilnik FBiH 72/09. Pravilnik o utvrđivanju dozvoljenih količina štetnih i opasnih materija u zemljištu i metode njihovog ispitivanja, Službene novine FBiH broj 72/2009 (In Bosnian)
  82. Pritchard H.L. The history of the Corps of Royal Engineers. V. 5: The Home Front, France, Flanders and Italy in the First World War. Chatham, UK, Institution of Royal Engineers, 1952. 728 p.
  83. Ridley R. To be Taken with a Pinch of Salt: The Destruction of Carthage // Classical Philology. 1986. V. 81. 140–146. https://doi.org/10.1086/366973
  84. Rodríguez-Seijo A., Cachada A., Gavina A., Duarte A.C., Vega F.A., Andrade M.L. Lead and PAHs contamination of an old shooting range: a case study with a holistic approach. 2017. Sci. Total Environ. 575. P. 367–377. https://doi.org/10.1016/j.scitotenv.2016.10.018
  85. Rose E.P.F. Impact of military activities on local and regional geologic conditions // Rev. Eng. Geol. 2005. V. 16. P. 51–66. https://doi.org/10.1130/2005.4016(05)
  86. Saito-Kokubu Y., Yasuda K., Magara M., Miyamoto Y., Sakurai S., Usuda S., Yamazaki H. et al. Depositional records of plutonium and 137Cs released from Nagasaki atomic bomb in sediment of Nishiyama reservoir at Nagasaki // J. Environ. Radioactivity. 2008. V. 99. P. 211–217. https://doi.org/10.1016/j.jenvrad.2007.11.010
  87. Salemi C. Refugee camps and deforestation in Sub-Saharan Africa // J. Dev. Econ. 2021. V. 152. P. 102682. https://doi.org/10.1016/j.jdeveco.2021.102682
  88. Sanders C.L. Radiological Weapons // Radiobiology and Radiation Hormesis. Cham: Springer, 2017. https://doi.org/10.1007/978-3-319-56372-5_2
  89. Schaetzl R.J., Anderson S. Soils: Genesis and Geomorphology. Cambridge: Cambridge University Press, 2005. 833 p.
  90. Shimizu Y., Kodama K., Nishi N. Radiation exposure and circulatory disease risk: Hiroshima and Nagasaki atomic bomb survivor data, 1950-2003 // Bmj. 2010. V. 340. P. 1–8. https://doi.org/10.1136/bmj.b5349
  91. Solomon N., Birhane E., Gordon C., Haile M., Taheri F., Azadi H., Scheffran J. Environmental impacts and causes of conflict in the Horn of Africa: A review // Earth-Sci. Rev. 2018. V. 177. P. 284–290. https://doi.org/10.1016/j.earscirev.2017.11.016
  92. Tešan Tomić N., Smiljanić S., Jović M. Examining the effects of the destroying ammunition, mines and explosive devices on the presence of heavy metals in soil of open detonation pit. Part 2: Determination of heavy metal fractions // Water Air Soil Poll. 2018. V. 229. https://doi.org/10.1007/s11270-018-3950-7
  93. The Effects of Herbicides in South Vietnam. Part A. Summary and Conclusions. Committee on the Effects of Herbicides in South Vietnam, National Research Council. 1974. National Academy of Sciences, Washington, DC. P. 409.
  94. UCDP Dataset Download Center https://ucdp.uu.se/downloads/
  95. United Nations Environment Programme. Environmental impact of the conflict in Gaza: Preliminary assessment of environmental impacts. Nairobi: United Nations Environment Programme, 2024. 50 p.
  96. Vasarevičius S., Greičiūte K. Investigation of soil pollution with heavy metals in Lithuanian military grounds // J. Environ. Engineering Landscape Managem. 2004. V. 12. P. 132–137. https://doi.org/10.3846/16486897.2004.9636834
  97. Venus M., Puntarić D., Gvozdić V., Vidosavljević D., Bijelić L., Puntarić A., Puntarić E., Vidosavljević M., Matijana J., Jasenka S. Determinations of uranium concentrations in soil, water, vegetables and biological samples from inhabitants of war affected areas in eastern Croatia (ICP-MS method) // J. Environ. Radioactivity. 2019. V. 203. P. 147–153. https://doi.org/10.1016/j.jenvrad.2019.03.004
  98. Vergnoux A., Di Rocco R., Domeizel M., Guiliano M., Doumenq P., Theraulaz F. Effects of forest fires on water extractable organic matter and humic substances from Mediterranean soils: UV-vis and fluorescence spectroscopy approaches // Geoderma. 2011. V. 160. P. 434–443. https://doi.org/10.1016/j.geoderma.2010.10.014
  99. Weber A.K., Bannon D.I., Abraham J.H., Seymour R.B., Passman, P.H., Lilley P.H., Parks K.K., Braybrooke G., Cook N.D., Belden A.L. Reduction in lead exposures with lead-free ammunition in an advanced urban assault course // J. Occup. Environ. Hyg. 2020. V. 17. P. 598–610. https://doi.org/10.1080/15459624.2020.1836375
  100. Westing A.H. Ecological Consequences of the Second Indochina War. Almqvist and Wiksell International. Stockholm, 1976. 119 p.
  101. Whitaker D.S. Endkampf am Rhein – Der Vormarsch der Westalliierten 1944/45. Verlag: Bechtermünz, 1991. 472 p.
  102. Whitecotton R.C.A., David M.B., Darmody R.G., Price D.L. Impact of foot traffic from military training on soil and vegetation properties // Environ.l Management. 2000. V. 26. P. 697–706. https://doi.org/10.1007/s002670002224
  103. Williams O.H., Rintoul-Hynes N.L.J. Legacy of war: Pedogenesis divergence and heavy metal contamination on the WWI front line a century after battle // Eur. J. Soil Sci. 2022. V. 73. P. e13297. https://doi.org/10.1111/ejss.13297
  104. Woodward R. Military geography // Int. Encyclopedia Geography. 2016. P. 1–7. https://doi.org/10.1002/9781118786352.wbieg0280
  105. World War II – Facts, Summary, History, Dates https://www.britannica.com/event/World-War-II
  106. Zachara J.M., Serne J., Freshley M., Mann F., Anderson F., Wood M., Jones T., Myers D. Geochemical processes controlling migration of tank wastes in Hanford’s vadose zone // Vadose Zone J. 2007. V. 6. P. 985–1003. https://doi.org/10.2136/vzj2006.0180

Arquivos suplementares

Arquivos suplementares
Ação
1. JATS XML

Declaração de direitos autorais © Russian Academy of Sciences, 2025

Согласие на обработку персональных данных с помощью сервиса «Яндекс.Метрика»

1. Я (далее – «Пользователь» или «Субъект персональных данных»), осуществляя использование сайта https://journals.rcsi.science/ (далее – «Сайт»), подтверждая свою полную дееспособность даю согласие на обработку персональных данных с использованием средств автоматизации Оператору - федеральному государственному бюджетному учреждению «Российский центр научной информации» (РЦНИ), далее – «Оператор», расположенному по адресу: 119991, г. Москва, Ленинский просп., д.32А, со следующими условиями.

2. Категории обрабатываемых данных: файлы «cookies» (куки-файлы). Файлы «cookie» – это небольшой текстовый файл, который веб-сервер может хранить в браузере Пользователя. Данные файлы веб-сервер загружает на устройство Пользователя при посещении им Сайта. При каждом следующем посещении Пользователем Сайта «cookie» файлы отправляются на Сайт Оператора. Данные файлы позволяют Сайту распознавать устройство Пользователя. Содержимое такого файла может как относиться, так и не относиться к персональным данным, в зависимости от того, содержит ли такой файл персональные данные или содержит обезличенные технические данные.

3. Цель обработки персональных данных: анализ пользовательской активности с помощью сервиса «Яндекс.Метрика».

4. Категории субъектов персональных данных: все Пользователи Сайта, которые дали согласие на обработку файлов «cookie».

5. Способы обработки: сбор, запись, систематизация, накопление, хранение, уточнение (обновление, изменение), извлечение, использование, передача (доступ, предоставление), блокирование, удаление, уничтожение персональных данных.

6. Срок обработки и хранения: до получения от Субъекта персональных данных требования о прекращении обработки/отзыва согласия.

7. Способ отзыва: заявление об отзыве в письменном виде путём его направления на адрес электронной почты Оператора: info@rcsi.science или путем письменного обращения по юридическому адресу: 119991, г. Москва, Ленинский просп., д.32А

8. Субъект персональных данных вправе запретить своему оборудованию прием этих данных или ограничить прием этих данных. При отказе от получения таких данных или при ограничении приема данных некоторые функции Сайта могут работать некорректно. Субъект персональных данных обязуется сам настроить свое оборудование таким способом, чтобы оно обеспечивало адекватный его желаниям режим работы и уровень защиты данных файлов «cookie», Оператор не предоставляет технологических и правовых консультаций на темы подобного характера.

9. Порядок уничтожения персональных данных при достижении цели их обработки или при наступлении иных законных оснований определяется Оператором в соответствии с законодательством Российской Федерации.

10. Я согласен/согласна квалифицировать в качестве своей простой электронной подписи под настоящим Согласием и под Политикой обработки персональных данных выполнение мною следующего действия на сайте: https://journals.rcsi.science/ нажатие мною на интерфейсе с текстом: «Сайт использует сервис «Яндекс.Метрика» (который использует файлы «cookie») на элемент с текстом «Принять и продолжить».